Up until the early 1980s, when many architectural offices around the world adopted them, computers had been predominantly the luxury of a few architectural firms and academic institutions. For example, since the early 1960s emblematic firms such as Skidmore Owings and Merril (SOM) in the United States, ARUP in the United Kingdom, and Clorindo Testa’s in Argentina used computers—albeit mostly for budgets, quantity estimation, and structural calculations. It took a couple of decades for computers to become personal, and relatively affordable, and for CAD systems to become commercially available (the first version of AutoCAD, for example, was released in 1982). It was then that architectural firms started to embrace them more widely, chiefly to facilitate drafting tasks. Today, the emerging paradigm of “building information modeling” seeks to bring together the graphical and the calculative in digital environments that integrate highly-detailed geometric building descriptions with information about material quantities, budgets, and structural attributes. At the same time, in a tradition that can be traced to the early days of computing, architectural researchers in academia and industry investigate the potential of interactive computing, algorithms, and robotics to automate or reconfigure aspects of design and construction. Clearly enough, computational ideas and methods are key factors shaping the intellectual and material labors of architects and other design professionals, as well as their aspirations.

This vertiginous territory has been the subject of a growing body of architectural and design scholarship. Researchers have sought to understand, for example, computational design methods’ manifold effects on the design professions, their historical origins, pedagogical implications, as well as their potentials for both creative design and managerial efficiency. However, the bulk of these efforts has focused on practices and institutions of the global North. As a result, our understanding

1. This observation was made early on by the late Australian architectural theorist William J. Mitchell and US architecture and digital design scholar Malcolm McCullough. See Mitchell and McCullough, Digital Design Media.
2. See, for example, Tombesi, “A True South for Design?”; Loukissas, Co-Designers.
4. See, for example, Ozkar, Rethinking Basic Design in Architectural Education.
of the role of digital technologies in architecture and design is framed by historical and theoretical armatures that closely reflect concerns, and interests, native to these locations—chiefly the United States, UK, and Europe—and thus carry with them assumptions that, when unchecked, can occlude important questions and domains of analysis. In addition, while in recent years there has been an uptick in critical scholarship on architecture, design, and computation, accounts of these technologies from within architecture and other design fields are typically advanced in support of their adoption and thus carry with them assumptions about their universality and convenience that can overwhelm critical, or simply analytical, dispositions. From these techno-centric perspectives the adoption of the newest technologies is often presented as a one-way process: as a linear path between “province” and “metropolis” and—drawing from British geographer Doreen Massey’s observation that in the uneven geographies of development physical distance acquires a temporal dimension—between ‘past’ and ‘future.’ Clearly, placing the global South in this conceptual past closes off the possibility to imagine other, alternative futures. With this special issue of Dearq we instead ask: How might we articulate other accounts of digital design and construction that do not place regions outside of the global North on the receiving end of technology and innovation? How might we dismantle the conceptual past that condemns entire regions and peoples to perpetually catch up with a seemingly pre-determined future?

Over the last decade, a group of Latin American scholars has been tracking the adoption of software and digital fabrication technologies by architects and architectural educators in this region, and the emergence of increasingly strong networks of international and inter-institutional collaboration. Peruvian design scholar and educator Pablo Herrera and collaborators, for example, have documented the influence of digital design and fabrication technologies in Latin America by mapping the movements of students from this region returning to their countries after completing degrees in US, EU, and UK universities, and following their impact on local universities and practices. These maps have made visible, for example, the emergence of local “fab labs,” or digital fabrication laboratories inspired by the “Fab Lab” initiative started at MIT. Echoing the ideas accompanying this initiative, these scholars have sought to emphasize the potential of these digitally-equipped spaces for stimulating the region’s social, economic, and political transformation. The expected benefits include to foster an entrepreneurial culture aligned with the prescriptions of the so-called “fourth industrial revolution,” collaborative opportunities between local artisans and digitally-savvy architects and designers, new formal styles that reinterpret local traditions for a technological zeitgeist, along with technology-driven approaches to children’s pedagogy. Related efforts have sought to understand the effects of digital technologies in Latin America’s architectural culture

5. See, for example, Leach and Yuan, Computational Design; Menges and Ahlquist, Computational Design Thinking.
8. We use global South as a fraught but useful category that is not exclusively tied to geographical locations commonly labeled as “underdeveloped” or “third world” but to broader and potentially more distributed phenomena including, for example, diasporic cultures in “developed” economies. For a recent articulation of the concept of world-making and epistemic de-centering, see Escobar, Designs for the Pluriverse.
through bibliometric analyses. Brazilian architects and design and computation scholars Gabriela Celani and Pedro Veloso, for example, have studied regional research trends in CumincAD, a database that aggregates research papers from several international digital design conferences and journals. Computationally analyzing metadata from thousands of papers, they sketch the evolution of the field following the Design Methods movement's aspirations to make design a more “scientific” practice in the 1960s into more recent efforts to introduce parametric design software and digital fabrication machines in architectural settings.\(^{14}\) In a different study, Brazilian architectural educators and digital design researchers Tássia Borges de Vasconcelos and David Sperling have drawn metadata from the same database to identify pedagogical trends in the region, and suggested that the recent dominance of specific keywords such as “parametric” indicate a conceptual shift in the use of software — from the digitization of drafting towards the automation of analytical and even configurational aspects of architectural design.\(^{15}\) In addition, the related database and series of exhibitions Homo Faber has valuably curated and disseminated the work of a new generation of Latin American designers and researchers using computational media, with a focus on digital fabrication technologies.\(^{16}\)

Parallel efforts in other Southern contexts have looked at computational design technologies through a similar lens, albeit using different methods. For example, Bangladeshi architect and educator A. Q. M. Abdullah and co-authors have used surveys to examine student attitudes towards the “digitization” of architectural education and practice in this South Asian country.\(^{17}\) With the goal of identifying pedagogical strategies to incorporate these technologies more effectively in the architectural curriculum, Jordanian architect and educator Rana Al-Matarneh and collaborators have used qualitative data to assess the state of adoption of computer-aided design software in Jordanian architectural education.\(^{18}\) Comparing survey data from 1997 and 2012, architect and scholar Ra’Ed K. QaQuish has pursued a similar question, suggesting that more university-level CAD training is required to accelerate adoption.\(^{19}\) From a different perspective, Egyptian architect and educator Muhammad Hegazi and collaborators have sought to utilize computational methods to foster a regional identity for Arab architecture by, for example, helping codify mathematical and geometric traits of Islamic patterns.\(^{20}\) Other studies in, for example, Pakistan,\(^{21}\) Nigeria,\(^{22}\) and the African continent,\(^{23}\) are similarly premised on the convenience of computational methods, and on the need to identify and target “barriers” to their adoption.

The body of work briefly reviewed above offers valuable insights about how architectural and design educators and practitioners outside of the global North have embraced digital technologies, and has helped to instigate this special issue. And yet, because of their focus on supporting the dissemination of digital technologies, these studies leave aside the very questions that we seek to confront with Other Computations. A few critical distinctions are thus in order: First, seeing computational design technologies as inherently positive and socially-transformative obfuscates important opportunities for analysis, such as those concerning these technologies’ relevance to particular contexts of design practice, or their problematic histories, unexpected failures, or their undesired effects on, for example, organizational cultures and labor practices. Second, seeing local expressions of computational design through the lens of dissemination tends to frame local practices, sites, and peoples in terms of their fitness to serve as subjects, or substrates, of digitization, potentially rendering invisible kinds of innovation and creativity that do not fit within imported technopedagogical molds. Finally, while mappings and bibliometric analyses can help visualize broad trends, they leave untouched the nuances, details, and inflection points where technological projects are realized. The picture emerging from these approaches is often one of “transfer” between a developed North and an underdeveloped South chasing after an always elusive, digitally-enabled modernity.

Recent work in science and technology studies (STS), design, and architectural studies offers some clues to avoid these pitfalls. Scholars in these fields have worked to re-signify “technology” and “science” to incorporate registers outside Western armatures, acknowledge the historical and ongoing intertwining of some of these technological projects with militarism, and emphasize the complex, situated, and dialogical

---

15. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions.”
nature of technological design and adoption. For example, Zimbabwean STS scholar Clapperton Mahvunga reminds us of the fundamental asymmetry underlying concepts such as "science," "technology," and "innovation" by virtue of their intellectual and political origins at the entwined histories of colonialism and imperial domination. He usefully asks what these terms might mean not "for" but "from" Africa. Using this framework, Ron Eglash and Ellen K. Foster’s description of the African Maker Movement, for example, attempts a generative re-specification of maker spaces that articulates them to African imaginaries of innovation, mathematical knowledge, communal life, and political agency. Challenging the presumed universality of technological solutions, United States communications and STS scholar Anita Say Chan has explored digital cultures in Peru shaped by government efforts to network the nation and foster the emergence of a digital creative class.

Also from the United States, historian and STS scholar Morgan Ames has documented the deployment of the (also MIT-based) “One Laptop Per Child” project in Paraguay, critically unpacking some of its ideological, pedagogical, and political underpinnings. From a different perspective, Colombian-Argentinian anthropologist Tania Pérez-Bustos has challenged the dichotomy between craft and technology that casts digital technologies as both universal and place-less while casting artisanal sensibilities towards situated technology design practices, with similar questions in mind, design and computation scholar Daniel Cardoso Llach, this issue’s co-editor, has examined CAD systems as historical artifacts with roots in US militarism, and as vehicles of culturally specific assumptions about design and construction labor. Through an ethnographic study of a building consultancy firm in the Middle East, his research documents tensions and conflicts arising from attempts to digitally coordinate a project’s design and construction, unsettling tropes about the centrality and universality of these technologies in architecture.

In addition, the global architectural history and theory collaborative (GAHTC) has done much in recent years to challenge the epistemological authority of Anglo-European accounts of the discipline by generating teaching materials aimed at enriching architectural history survey courses with a global perspective. These include, for example, lecture materials covering Islamic, South Asian, West African, and pre-Hispanic architectural and urban traditions.

Further, a strand of recent scholarship in media history offers additional tools to reimagine the conceptual geographies of computation in architecture and design. These recognize that while technology and science are commonly seen as essential to the formation of the contemporary global North, the same logic is not usually applied to historical accounts of Southern geographies. Addressing this imbalance, recent histories from Latin America and Oceania, for example, have focused on developments from these regions, complicating conventional genealogies of technological development that focus on a handful of well-studied pioneers and institutions. These have helped to re-shape diverse fields including digital music, computational economics, computer graphics, and management cybernetics. Australian musician and historian Paul Doornbusch, for example, has documented how in 1949 in Melbourne a team led by Trevor Pearcey assembled the CSIRAC, a vacuum tube computer which was used systematically to explore sound and music. New Zealander economist Alan Bollard has observed how his fellow countryman William Phillips created in London the MONIAC computer, a machine to model macroeconomic dynamics with a fluidic circuit; Colombian media scholar and artist Andres Burbano, this issue’s co-editor, has shown how in that same year, 1949, Brazilian avant-garde artist Geraldo de Barros created in São Paulo a series of experimental photos using punched cards instead of negative films. United States STS scholar Eden Medina has documented how a large-scale cybernetic system, a kind of proto-Internet, was deployed in Chile in the late 1960s during Salvador Allende’s government to help manage the country’s economy—a project led by British cybernetician Stafford Beer and Chilean scientist...
Fernando Flores, among others. Australian artist, engineer, and scholar Stephen Jones has exposed early developments in computer graphics and music in Australia, explicitly adopting an artist’s point of view. These histories are not coincidences, or oddities, but rather evidence of the complex historical entanglement of technologies with multiple academic and creative fields— an entanglement that is always shaped by geocultural and historical specificities.

In sum, these efforts from across STS and the history of media, architecture, and technology offer clues to think about architectural and design innovations from Southern contexts as epistemologically autonomous. On the one hand, they help cast technological developments from the global North in their cultural, political, and material specificity, thus questioning their presumed universality. On the other, they cultivate a sensibility towards practices that do not fit within received technological prescriptions, helping make visible synergies between local forms of thinking, designing, and inventing, and what Mahvunga calls “inbound” ideas and methods.

In alignment with these perspectives, this special issue of Dearq on Other Computations proposes a change of scope and analytical emphasis in the study of architecture’s digital turn. With a focus on Latin America and other Southern contexts, the issue imagines these geographical locations not as new territories to unveil, explore, or mine for empirical raw materials— nor as markets ripe for the adoption of imported technological solutions— but rather as domains where the project of architectural and design computation is crucially advanced, and where a critical vantage point might be gained to examine it. At the same time, the issue seeks to enable dialogical thinking about the dynamics of technological design and adoption. The project of modernity cannot be simply seen through the lens of colonial plunder and domination. As Indian post-colonial historian Dipesh Chakrabarti reminds us, modern ideals have often been wielded in Southern contexts to resist, or subvert, colonialist frames. In thinking about the always incomplete modernities of the global South it is thus important to leave room for generative appropriations and dialogues. After Mahvunga, instead of asking what computation and software might mean ‘for’ architecture and design in the global South, our issue asks what these technologies might mean ‘from’ there. It is in this spirit that the materials assembled in this issue interrogate design-computational settings in Southern contexts. The issue comprises eight peer-reviewed research articles, one invited essay, two visually rich sections featuring the work of practitioners, and an afterword. The peer-reviewed scholarly articles responded to the issue’s call examining “other computations” in their historical disclosures and contemporary dispositions through a variety of methodological lenses—from the historical to the ethnographic and the project-based. In order to avoid approaching digital technologies with a narrow focus on transfer and dissemination, each author approaches these systems as open questions, and not as answers in and of themselves. The four articles that open the issue share an inquisitive attitude that draws from the historian’s and the ethnographer’s toolkits to illuminate historical and sociotechnical aspects of computational design. Based on a close ethnographic study of CNC factory workers in Ahmedabad, India, Megha Chand Inglis shows how conventional distinctions between manual and digital, and between tradition and future, are insufficient to understand the messy modernity of present-day architectural construction. Her article offers detailed portraits of three actors involved in the design and construction of an Indian temple, vividly accounting for their lived experiences, as well as for their entanglement in a global chain of material and digital labors connecting English Midlands to the largest city in Gujarat. Examining pedagogical materials from the School of Architecture at Universidad de Costa Rica in the 1970s, Natalia Solano-Meza’s reveals how computational ideas and methods came to embody aspirations to bring technical rationality to a tropical context. Describing the intellectual trajectory of these experiments in a strand of British cybernetics, as well as some of their ongoing legacies, her article reflects on how computational ideas have acted as vehicles of colonial and developmentalist paths of architectural education and practice, but also as instigators of unexpected pedagogical experiences and practical projects. Through a close visual and historical reading of an iconic modernist building in Algiers, Amina Rezoug and Mine Ozkar observe how dwellers’ gradual transformations of the building challenge both the building’s original design and its established historiography. Of interest here is the authors’ ingenious use of a classic computational design formalism, Shape Grammars, to document not only the building’s shape but also its evolution. Drawing from a rich ethnographic and design

35. Medina, Cybernetic Revolutionaries.
37. The term “digital turn” is developed by Italian architectural scholar Mario Carpo in Carpo, The Digital Turn in Architecture 1992 - 2012.
38. ZKM, 05/23.
39. French philosopher Bruno Latour observes that the project of modernity is always incomplete — that in fact “we have never been modern.” Latour, We Have Never Been Modern. British geographer Matthew Gandy has discussed “fractured modernities” in the context of water infrastructure and control in what he terms the “bacteriological city.” Gandy, “The Bacteriological City and Its Discontents.”
40. Masolo et al., What Do Science, Technology, and Innovation Mean from Africa?
41. See Stiny et al., “Shape Grammars and the Generative Specification of Painting and Sculpture”; Knight, Transformations in Design.
study of the craft of wire-bending in the Trinidad and Tobago carnival, Vernelle Noel leads us to imagine new ways to bring craft and computation together. She documents her development of an experimental digital design tool based on her cross-disciplinary study of Trinidad's wire-benders—whose technique is slowly disappearing as a result of generational change and other factors. With this, Noel proposes a series of principles to guide the development of digital tools that enter in conversation with and help recuperate artisans’ knowledge.

The four articles that follow rigorously document and reflect upon projects that help illuminate contemporary computational design practices in Southern contexts. Extending their ambitious project to trace the adoption of digital technologies in Latin America’s architecture, David Sperling, Pablo Herrera and Rodrigo Scheeren critically review a series of recent projects in the region which engage with digital fabrication technologies. Responding to this issue’s call, they enrich their analyses with STS and post-colonial thinking to explore diverse configurations of the digital in Latin American architecture and design—from “fab labs” to the emergence of digital craft communities—emphasizing hacking and other bottom-up strategies. Through a discussion of a series of projects exploring the intersection of urban space and digital platforms, Pablo de Soto reflects on the history and aspirations of the activist group Hackitectura from Spain, which he himself integrated. In these projects, medieval castles are intertwined with abandoned nuclear research facilities, and terrestrial and maritime borders are explored through open-source software and open hardware, exposing the collective’s ambition to use computational systems to re-think conventional spatial categories. Specifically, the article proposes the wiki, the square, and the control room as new hybrid spaces comprising both digital and physical components. Taking Our Lady of the Valley church as a case study, a legacy from the Spanish architect Felix Candela, Diego Navarro-Mateu, Oriol Carrasco and Ana Cocho-Bermejo outline a computational methodology for the geometric analysis of historical buildings. Their methodology expertly blends parametric design and inverse engineering methods, and uses a genetic algorithm to investigate and re-describe the distinctive hyperbolic paraboloid shapes of Candela’s architecture. Of special interest here is the use of algorithmic methods for historical-analytical purposes—rather than for formal-exploration or structural analysis. In a tradition of using computation as a vehicle for participatory approaches to architectural and urban practices, Camilo Andrés Cifuentes Quin and Carlos Alberto Nader Manrique document their project to harness the flexibility of digital design and combinatorial systems for intervening in precarious housing in semi-formal urban settlements in Bogotá, Colombia. Their project offers one perspective on how generative design tools might be put in the service of local issues and communities. An invited historical essay by Australian artist, engineer, and scholar Stephen Jones outlines the distinctive trajectory that computer graphics took in Australia from 1949 onwards and complements the research section of the issue. Focusing on two of Australia’s earliest mainframe computers, CSIRAC and SILLIAC, Jones paints a lively picture of the materiality of the computational image—of its transit from system diagnostics to scientific visualization—and their role setting the stage for multiple applications of computer graphics in other practical and artistic domains including, for example, weather forecasting, music, and games. Illustrating the article are compelling historical photographs and screenshots which bring this history—which has often focused on contributions by the United States and United Kingdom institutions—into focus. In the spirit of an afterword for the research section, French historian of architecture and technology Antoine Picon reflects on the materials presented and on the importance of articulating new stories about architecture and the digital.

The Projects section, curated by Colombian architect David Rodríguez Vargas, brings together computational expressions from across the architectural, the artistic, and the pedagogical. These illustrate how Southern practitioners have appropriated, transformed, hacked, or developed their own approaches to computational design. Featuring projects from Australia, Brazil, Chile, Colombia, Indonesia, and Nepal, the selection emphasizes participatory and culturally-situated applications of formal systems and digital fabrication methods in architecture. Closing the issue is the Creation section, featuring the work of Colombian artist Julián Jaramillo. Three of his recent projects using location-aware technologies to augment urban space with sound are introduced: The Smartphone Ensemble (2015), The AirQ Jacket (2016), and Lumina Nocte (2016). These explore new ways for people to interact with both mobile devices and urban space, suggesting new approaches to intervening in and studying urban environments. Using QR codes, Dearq readers will be able to experience fragments of these projects.

The materials assembled in Other Computations do not offer an exhaustive map or catalogue—this is neither possible nor necessary—but rather fragments of a complex picture that continues to unfold. They propose a re-focusing of architectural and design scholarship towards narratives that challenge, rather than reinforce, the universality and centrality of technological systems. In sum, the issue invites us to lend careful attention to the historical, material, and aesthetic specificity of computational systems in architecture and thus change our focus from a universal computation into plural, situated, and local computations.
Hasta los inicios de la década de 1980, cuando fueron adoptados por muchas oficinas de arquitectura alrededor del mundo, los computadores habían sido el lujo de unas cuantas firmas y espacios académicos. Por ejemplo, desde la década de 1960 firmas emblemáticas tales como Skidmore Owings and Merrill (SOM) en los Estados Unidos, ARUP en el Reino Unido, y la de Clorindo Testa en Argentina utilizaron computadores sobre todo para la realización de presupuestos, estimación de cantidades y cálculos estructurales. Fue solo hasta un par de décadas después, con la reducción del precio y del tamaño de los computadores, y con la comercialización de los primeros sistemas de diseño asistido por computador, que oficinas más modestas empezaron a adoptarlos para facilitar, primordialmente, las tareas de dibujo. Actualmente, un paradigma emergente de lo digital en la arquitectura se enfoca en el “modelado de información arquitectónica” el cual reúne funciones gráficas y de cálculo en entornos digitales que integran descripciones geométricas muy detalladas con capas de información asociadas tales como cantidades de materiales, presupuestos y atributos estructurales. Al mismo tiempo, en una tradición que se remonta a los primeros días de la informática, investigadores en el ámbito académico e industrial investigan el potencial de los sistemas interactivos, las simulaciones, los algoritmos y la robótica para automatizar o reconfigurar aspectos del diseño y la construcción arquitectónicas. Claramente, las ideas y los métodos computacionales son factores clave que le han dado forma a las labores materiales e intelectuales de los arquitectos, así como a sus aspiraciones.

Este territorio vertiginoso ha sido objeto de estudio por parte de un número creciente de investigadores que han examinado, por ejemplo, los diversos efectos que las herramientas digitales han tenido en el ámbito profesional de los arquitectos, sus orígenes de estas tecnologías, así como su potencial tanto para el diseño creativo como para la eficiencia en materia administrativa. Sin embargo, el grueso de estos esfuerzos se ha concentrado en prácticas e instituciones del norte global, razón por la cual nuestra comprensión del papel de lo digital en la arquitectura está limitada por marcos históricos y teóricos que reflejan preocupaciones e intereses propios de estos lugares —principalmente de los Estados Unidos, el Reino Unido y Europa. Esto hace que nuestra comprensión de lo digital cargue consigo supuestos que, si no se hacen explícitos, pueden obstruir importantes interrogantes y campos de análisis.

Por otro lado, si bien en los últimos años han surgido algunos estudios críticos sobre la relación entre arquitectura, diseño y computación, el tratamiento que se le da a estas tecnologías dentro de la arquitectura suele ser de carácter promocional, lo cual supone aceptar a priori la universalidad y conveniencia de estas tecnologías, abrumando disposiciones críticas, o simplemente analíticas. Desde esta perspectiva tecnocéntrica, la cual busca acelerar la diseminación de las tecnologías más recientes, el proceso de adopción tecnológica se presenta como algo unidireccional: un camino lineal entre “metropoli” y “provincia” y (tomando como base la observación de la geógrafa británica Doreen Massey de que en las geografías desiguales del desarrollo la distancia física adquiere una dimensión temporal) entre “pasado” y “futuro”. Claramente, ubicar al sur global en este pasado conceptual cierra la posibilidad de imaginar futuros alternativos. Por el contrario, en esta edición de Dearq preguntamos: ¿Cómo articular otros relatos sobre
diseño y construcción computacional que no ubiquen a las regiones por fuera del norte global como simples receptores de la tecnología y la innovación? ¿Cómo desmantelar ese pasado conceptual que condena a regiones y pueblos enteros a ponerse al día perpetuamente con un futuro aparentemente predeterminado?

Durante la última década, un grupo de académicos latinoamericanos ha investigado los procesos de adopción del software y tecnologías de fabricación digital por parte de arquitectos y académicos de esta región, así como el surgimiento y consolidación de redes de colaboración internacional e interinstitucional. Por ejemplo, Pablo Herrera, académico y profesor peruano, y sus colaboradores, han hecho un valioso trabajo documentando la influencia de las tecnologías del diseño y la fabricación digital en América Latina, elaborando mapas que muestran los movimientos migratorios de estudiantes Latinoamericanos que regresan a sus países después de completar estudios en universidades de los Estados Unidos, la Unión Europea y el Reino Unido, para luego monitorear su impacto en universidades y prácticas locales.11 Estas investigaciones han hecho visible, por ejemplo, el surgimiento de los “fab labs” en la región —laboratorios de fabricación digital inspirados en el proyecto “Fab Lab” iniciado en MIT.12 Haciendo eco de las ideas que acompañan esta iniciativa, estos investigadores han buscado destacar el potencial de estos espacios para estimular la transformación social, económica y política de la región. Entre los beneficios deseados figuran el fomento de una cultura empresarial conforme a los zeitgeist, así como el surgimiento y consolidación de redes de colaboración entre artesanos locales, arquitectos y diseñadores conocedores de lo digital; nuevos estilos formales que reinterpretan las tradiciones locales para adaptarlas al zeitgeist tecnológico, además de pedagogías infantiles de enfoque tecnológico.15

Esfuerzos conexos han buscado comprender los efectos de las tecnologías digitales en la cultura arquitectónica de América Latina median-

11. Sperling, Herrera Polo, y Scheeren, “Migrant Movements of Homo Faber”.
12. Gershenfeld, Fab: The Coming Revolution on Your Desktop--from Personal Computers to Personal Fabrication; Gershenfeld, Gershenfeld, y Cutcher-Gershenfeld, Designing Reality.
15. Angelo et al., “Fab Lab y Multiculturalidad En América Latina”.
16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.

16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.


Esfuerzos conexos han buscado comprender los efectos de las tecnologías digitales en la cultura arquitectónica de América Latina median-

16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.

Esfuerzos conexos han buscado comprender los efectos de las tecnologías digitales en la cultura arquitectónica de América Latina median-

16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.

Esfuerzos conexos han buscado comprender los efectos de las tecnologías digitales en la cultura arquitectónica de América Latina median-

16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.

Esfuerzos conexos han buscado comprender los efectos de las tecnologías digitales en la cultura arquitectónica de América Latina median-

16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.

Esfuerzos conexos han buscado comprender los efectos de las tecnologías digitales en la cultura arquitectónica de América Latina median-

16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.

Esfuerzos conexos han buscado comprender los efectos de las tecnologías digitales en la cultura arquitectónica de América Latina median-

16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.

Esfuerzos conexos han buscado comprender los efectos de las tecnologías digitales en la cultura arquitectónica de América Latina median-

16. Celani y Veloso, “CAAD Conferences”.
17. Borges de Vasconcelos, “From Representational to Parametric and Algorithmic Interactions”.
Con el objetivo de identificar estrategias pedagógicas que permitan incorporar más eficazmente estas tecnologías en el programa de estudios de arquitectura, la arquitecta y docente jordana Rana Al-Matarneh, y sus colaboradores, han utilizado una variedad de datos cualitativos para evaluar el estado de adopción del software de diseño asistido por computador en la enseñanza de la arquitectura en Jordania.20 Comparando datos de encuestas elaboradas en 1997 y 2012, el arquitecto y académico Ra’Ed K. QaQish ha planteado una cuestión similar, sugiriendo que es necesaria una mayor formación en CAD a nivel universitario.21 Con una perspectiva abiertamente regional, el arquitecto y profesor egipcio Muhammad Hegazi, y sus colaboradores, han buscado utilizar métodos informáticos con el propósito de fomentar una identidad regional para la arquitectura árabe, por ejemplo, mediante la codificación y modelación de características matemáticas y geométricas de los diseños islámicos en software de CAD.22 Otros estudios realizados, por ejemplo, en Pakistán,23 así como en Nigeria24 y otros países del continente africano,25 se basan igualmente en la premissa de la conveniencia de los métodos informáticos para estos contextos y en la necesidad de identificar y eliminar los obstáculos para su adopción.

El conjunto de trabajos brevemente reseñados anteriormente ofrece una perspectiva valiosa sobre la forma en que la computación ha sido abordada por educadores y profesionales de arquitectura y el diseño por fuera del Norte global, la cual ha ayudado a motivar este número especial de Dearq. Sin embargo, debido a su énfasis en promover la difusión de las tecnologías digitales, estos estudios dejan de lado las preguntas clave que buscamos confrontar en Otras computaciones. Por esta razón es necesario hacer algunas distinciones críticas. En primer lugar, considerar las tecnologías de diseño computacional como inherentemente positivas y transformadoras de la sociedad cierra posibilidades de análisis, tales como las relativas a la pertinencia de dichas tecnologías a prácticas específicas y contextos específicos, a sus legados históricos y orígenes problemáticos, y a sus fracasos inesperados o efectos indeseados en, por ejemplo, culturas organizacionales y prácticas laborales. En segundo lugar, ver expresiones locales del diseño computacional a través del lente de la difusión tiende a enmarcar prácticas, tópicos y personas “locales” en términos de su idoneidad para servir como sujetos, o soportes, de digitalización —lo cual puede hacer invisibles formas de innovación y creatividad que no encajan en patrones tecnopedagógicos importados. Por último, si bien los mapas, genealogías, y análisis bibliométricos permiten percibir tendencias generales, estos métodos no permiten aproximarse a los detalles, matices y puntos de inflexión en los cuales se cifra la realización de los proyectos tecnológicos. La imagen que surge de estos enfoques es la de una “transferencia” entre un Norte desarrollado y un Sur subdesarrollado el cual persigue una siempre evasiva modernidad digital.

Algunos estudios recientes en ciencia, tecnología y sociedad (CTS), arquitectura y diseño nos ofrecen algunas pistas para evitar estas trampas. Investigadores en estos campos han buscado re-significar los términos “tecnología” y “ciencia” con el fin de incorporar registros por fuera de andamiajes teóricos Occidentales, reconocer el vínculo histórico y actual de algunos de estos proyectos tecnológicos con el militardisminismo y la explotación, y enfatizar la naturaleza compleja, circunstancial y dialógica del diseño tecnológico y su adopción. Por ejemplo, el académico zimbabuense en CTS Clapperton Mahvunga nos recuerda la asimetría fundamental que subyace en los conceptos de “ciencia”, “tecnología” e “innovación” en virtud de sus orígenes intelectuales y políticos, los cuales están enmarcados por historias que entrelazan el colonialismo y la dominación imperial. De forma valiosa se pregunta qué pueden significar estos términos no “para” África sino “desde” África.26 En este contexto, la descripción que hacen Ron Eglash y Ellen K. Foster del movimiento maker en África, por ejemplo, procura re-especificar, de forma generativa, los laboratorios denominados maker spaces de forma que estos se articulen con imaginarios africanos de innovación, conocimiento matemático, vida en común y representación política.27 Desafiando la presunta universalidad de las soluciones tecnológicas, la investigadora estadounidense en comunicaciones y CTS Anita Say Cha ha explorado la conformación de culturas digitales en el Perú en relación con los esfuerzos del gobierno de este país para conectar la nación mediante redes digitales y fomentar una clase creativa digital.28 La también estadounidense Morgan Ames, historiadora e investigadora en CTS, ha documentado el despliegue del proyecto basado en MIT One Laptop Per Child (un portátil por cada niño) en Paraguay, y ha desentrañado críticamente algunos de sus fundamentos pedagógicos, ideológicos y políticos.29 Desde una perspectiva diferente, la antropóloga colombo-argentina Tania Pérez-Bustos ha puesto en tela de juicio la dicotomía entre lo artesanal y lo tecnológico, la cual sitúa a la tecnología digital como algo universal, mientras posiciona prácticas artesanales como propias a situaciones y culturas específicas. Apelando a las sensibilidades de los CTS hacia prácticas situadas de diseño tecnológico,30 Pérez-Bustos examina críticamente proyectos

22. Hegazy, Fathi, y Saleh, “Computational Design Potentials Promoting Regional Arab Architecture”.
23. Waseem, Alam Kazmi, y Qureshi, “INNOVATION IN EDUCATION - Inclusion of 3D-PrintingTechnology in Modern Education System of Pakistan”.
25. Oladele-Emmanuel, Rejeb, y Redlich, “Strategic Management”.
26. Masolo et al., What Do Science, Technology, and Innovation Mean from Africa?
27. Masolo et al.
28. Chan, Networking Peripheries.
30. Suchman, Human-Machine Reconfigurations.
que combinan los textiles y las tecnologías digitales haciendo hincapié en la especificidad material y cultural de su diseño, revelándolo como una práctica artesanal. Explorando preguntas similares, el académico en diseño y computación Daniel Cardoso Llach, co-editor de este número, ha estudiado los sistemas diseño asistido por computador como artefactos históricos con raíces en el militarismo estadounidense, y como vehículos de concepciones culturalmente específicas de las labores del diseño y la construcción. A través de un estudio etnográfico de una consultoría de diseño y construcción en un país del Medio Oriente, su trabajo además documenta conflictos que surgen del intento de coordinar digitalmente el diseño y la construcción de un proyecto, desestabilizando así narrativas sobre la supuesta centralidad y universalidad de estas tecnologías. Además, el Grupo Colaborativo sobre Historia y Teoría de la Arquitectura Global (GAHTC, por su sigla en inglés) ha contribuido a desafiar la autoridad epistemológica de los relatos anglo-europeos sobre la historia de la arquitectura generando materiales didácticos destinados a enriquecer los cursos de historia y la historia de las geografías del Sur. Para hacer frente a este desequilibrio, historias informáticas recientes de América Latina y Oceanía, por ejemplo, se han centrado en los avances de estas regiones, enriqueciendo las genealogías convencionales del desarrollo tecnológico que generalmente se han centrado en un puñado de instituciones y precursores. Estas han ayudado a reformar campos diversos, tales como la música digital, la economía computacional, los gráficos por computador y la cibernética. El músico e historiador australiano Paul Doornbusch, por ejemplo, ha documentado cómo en 1949, en Melbourne, un equipo dirigido por Trevor Pearcey creó el CSIRAC, una computadora de tubos al vacío que se utilizó sistemáticamente para explorar tópicos sonoros y musicales; el economista neozelandés Alan Bollard ha observado cómo el también inventor neozelandés William Phillips creó en Londres la computadora MONIAC, una máquina desarrollada como terrenos en los que el proyecto de la computación arquitectónica se desarrolla de forma crucial, y desde los cuales adoptar una posición crítica privilegiada sobre este. Al mismo tiempo, busca hacer posible un pensamiento dialógico acerca de las dinámicas del diseño y la adopción de las tecnologías. El proyecto de la modernidad no puede verse simplemente a través del lente del saqueo y la dominación colonial.

Una serie de estudios recientes sobre la historia de los medios aporta herramientas adicionales para re-imaginar las geografías conceptuales de la computación en la arquitectura y el diseño. Estos parten de observar que, si bien existe una tendencia a comprender y explicar la tecnología y el conocimiento como elementos esenciales de la formación del Norte global contemporáneo, no suele aplicarse la misma lógica a los relatos históricos de las geografías del Sur. Para hacer frente a este desequilibrio, historias informáticas recientes de América Latina y Oceanía, por ejemplo, se han centrado en los avances de estas regiones, enriqueciendo las genealogías convencionales del desarrollo tecnológico que generalmente se han centrado en un puñado de instituciones y precursores. Estas han ayudado a reformar campos diversos, tales como la música digital, la economía computacional, los gráficos por computador y la cibernética. El músico e historiador australiano Paul Doornbusch, por ejemplo, ha documentado cómo en 1949, en Melbourne, un equipo dirigido por Trevor Pearcey creó el CSIRAC, una computadora de tubos al vacío que se utilizó sistemáticamente para explorar tópicos sonoros y musicales; el economista neozelandés Alan Bollard ha observado cómo el también inventor neozelandés William Phillips creó en Londres la computadora MONIAC, una máquina desarrollada como terrenos en los que el proyecto de la computación arquitectónica se desarrolla de forma crucial, y desde los cuales adoptar una posición crítica privilegiada sobre este. Al mismo tiempo, busca hacer posible un pensamiento dialógico acerca de las dinámicas del diseño y la adopción de las tecnologías. El proyecto de la modernidad no puede verse simplemente a través del lente del saqueo y la dominación colonial.

31. Pérez-Bustos, “Hilvanar tecnologías digitales y procesos de tejido o costura artesanal”.
34. Doornbusch, The Music of CSIRAC.
35. Bollard, A Few Hares to Chase.
36. Burbano, “Photo(Info)graphia: Geraldo de Barros and the New Media.”
37. Medina, Cybernetic Revolutionsaries.
38. Jones, Synthetics.
Como nos recuerda el historiador postcolonial indio Dipesh Chakrabarti, en los contextos del sur los ideales modernos se han blandido a menudo para resistir, o subvertir, dinámicas colonialistas.40 Por lo tanto, al pensar en las modernidades siempre incompletas del sur global es importante dejar espacio para las apropiaciones generativas, los diálogos y las subversiones. Siguiendo a Mahvunga, 41 en lugar de preguntarnos qué significa la computación y el software “para” la arquitectura y el diseño en el sur global, este número se pregunta qué pueden significar estas tecnologías “desde” allá.

Es en este espíritu que los materiales reunidos en esta publicación interrogan ámbitos de diseño computacional en el sur global. Estos comprenden ocho artículos de investigación revisados por pares, un ensayo invitado, dos secciones con contenidos visuales sobre proyectos y un epílogo. Los artículos académicos revisados por pares responden a la convocatoria del número examinando expresiones históricas y contemporáneas de la computación en contextos del Sur a través de una variedad de lentes metodológicos—desde lo histórico y etnográfico a estudios de caso. Evitando abordar lo digital con un enfoque centrado en acelerar su transferencia y diseminación, cada autor explora estos sistemas como preguntas abiertas, y no como respuestas en y por sí mismas. Los cuatro artículos que abren el número comparten una actitud inquisitiva que se vale de las herramientas del historiador y del etnógrafo para iluminar aspectos históricos y socio-técnicos del diseño computacional. A la luz de un estudio etnográfico llevado a cabo en una fábrica equipada con máquinas de control numérico (CNC por su sigla en inglés) en Ahmedabad, India, Megha Chand Inglis muestra cómo las distinciones convencionales entre lo manual y lo digital y, entre tradición y futuro, son insuficientes para comprender la confusa modernidad de la producción arquitectónica actual. Su artículo ofrece retratos detallados de tres actores que participan en el diseño y la construcción de un templo indio en Londres, dando vivida cuenta de sus experiencias, así como de su entrelazamiento con una cadena global que conecta—mediante labores materiales y digitales—la Inglatera rural, con la ciudad más grande de la provincia de Gujarat. Examinando materiales pedagógicos de la Escuela de Arquitectura de la Universidad de Costa Rica en la década de 1970, Natalia Solano-Meza revela cómo ideas y métodos computacionales llegaron a encarnar la aspiración de llevar la racionalidad técnica a un contexto tropical. Documen
tando las raíces de esos experimentos en ideas desarrolladas en una rama de la cibernética británica, y reflexionando sobre sus legados, su artículo ofrece materiales para reflexionar sobre la forma en que las ideas computacionales han servido para trazar caminos coloniales y desarrollistas para la educación y la práctica arquitectónica en contextos del Sur, instigando a la vez experiencias pedagógicas y proyectos prácticos inesperados. A través de una detallada lectura visual e histórica de un emblemático edificio moderno en Argel, Amina Rezoug y Mine Ozkar observan cómo la transformación gradual del edificio por parte de sus habitantes desafía tanto su diseño original como su histórico. Las autoras hacen uso ingenioso de un formalismo clásico del diseño computacional, las gramáticas de forma,44 para documentar no sólo la forma del edificio, sino su evolución. A partir de un rico estudio etnográfico de la artesanía del curvado de alambre practicada en el Carnaval de Trinidad y Tobago, Vernelle Noel nos lleva a imaginar nuevas articulaciones de lo artesanal e lo digital. El artículo documenta el desarrollo de una herramienta de diseño computacional basada en su estudio de esta técnica, la cual está desapareciendo como resultado del cambio generacional y otros factores. Así, Noel propone una serie de principios para guiar el desarrollo de herramientas de diseño con la participación de artesanos y comunidades con el fin de ayudar a documentar y recuperar sus conocimientos.

Mediante un análisis riguroso de proyectos, los cuatro artículos siguientes ayudan a entender prácticas contemporáneas de diseño computacional en contextos del Sur. Ampliando su ambicioso proyecto de documentar la adopción de tecnologías digitales en Latinoamérica, David Sperling, Pablo Herrera y Rodrigo Scheeren revisan críticamente una serie de proyectos recientes de arquitectura y diseño que hacen uso de la fabricación digital en la región. Respondiendo a la convocatoria para este número, su análisis acude a herramientas de los estudios de CTS y del pensamiento post-colonial para explorar diversas configuraciones de lo digital en la arquitectura y el diseño en América Latina—desde los “fab labs” hasta el surgimiento de comunidades de artesanía digital—haciendo énfasis en prácticas de hacking y otras estrategias que parten de lo colectivo. A través de la discusión de una serie de proyectos que exploran la intersección del espacio urbano y las plataformas digitales, Pablo de Soto reflexiona sobre la historia y las aspiraciones del grupo activista Hacktectura de España, grupo del cual él mismo fue integrante. En sus proyectos, castillos medievales se entremezclan con instalaciones abandonadas para la investigación nuclear y se exploran las fronteras terrestres y marítimas a través de software y hardware de código abierto. Así, exponen la ambición del colectivo de utilizar sistemas computacionales abiertos para repensar categorías espaciales convencionales. Concretamente, el artículo propone el wiki, la plaza y la sala de control como nuevos espacios híbridos que comprenden componentes tanto digitales como físicos. Tomando a la iglesia de Nuestra Señora del Valle, legado del arquitecto español Félix Candela, como caso de estudio, Diego Navarro-Mateu, Oriol Carrasco y Ana Cocho-Bermejo esbozan una metodología computacional para el análisis geométrico de edificios históricos. Su metodología combina de manera experta el diseño paramétrico y los métodos de ingeniería inversa y utiliza un algoritmo genético para investigar y redescubrir los paraboloíde hiperbólicos que distinguen la arquitectura de Candela. De especial interés es el uso de métodos algorítmicos para el estudio histórico-analítico, más que para la exploración formal o estructural. Siguiendo una tradición del uso de la computación como un medio para la planeación participativa a niveles arquitectónico y urbano, Camilo Andrés Cifuentes Quin y Carlos Alberto Nader Manrique

40. ZKM, 05/23.
41. El filósofo francés Bruno Latour señala que el proyecto de la modernidad está siempre incompleto —de hecho, que “nunca hemos sido modernos”. Latour, We Have Never Been Modern. Por su parte el geógrafo británico Matthew Gandy ha discutido las “modernidades fracturadas” en el contexto de la infraestructura y el control del agua en lo que él llama la “ciudad bacteriológica”. Gandy, “The Bacteriological City and Its Discontents”.
42. Masolo et al., What Do Science, Technology, and Innovation Mean from Africa?

documentan su proyecto para aprovechar la flexibilidad del diseño digital y los sistemas combinatorios con el fin de intervenir en viviendas precarias en asentamientos urbanos semif formales de Bogotá, Colombia. Su proyecto muestra cómo herramientas de diseño generativo pueden ponerse al servicio de desafíos y comunidades locales. Un ensayo invitado escrito por el artista, ingeniero y académico australiano Stephen Jones, el cual esboza la historia de la computación gráfica en Australia desde 1949 en adelante, complementa los artículos de investigación del número. Enfocado en dos de las primeras computadoras de Australia, el CSIRAC y el SILLIAC, Jones presenta un panorama vívido de la materialización de la imagen computarizada, su tránsito desde el diagnóstico de sistemas a la visualización científica y la función que ella ejerció preparando el terreno para múltiples aplicaciones gráficas en otros ámbitos prácticos y artísticos como, por ejemplo, el pronóstico del tiempo, la música y los juegos. El artículo está ilustrado con fotografías y capturas de pantalla históricas las cuales resaltan una historia que a menudo se ha centrado en las contribuciones de las instituciones de los Estados Unidos y el Reino Unido. Cerrando la sección de investigación, un epílogo del historiador francés de la arquitectura y la tecnología Antoine Picon reflexiona sobre los artículos y sobre la importancia de generar nuevos relatos sobre lo digital en arquitectura.

La sección de Proyectos curada por el arquitecto colombiano David Rodríguez Vargas reúne expresiones de lo computacional en lo arquitectónico, lo artístico y lo pedagógico. Estas ilustran cómo prácticas del Sur se han apropiado, transformado, hackeado, o desarrollado sus propias tecnologías del diseño computacional. Exponiendo proyectos desarrollados en Australia, Brasil, Chile Colombia, Indonesia y Nepal la sección hace énfasis en aspectos locales y comunitarios de la computación, así como en aplicaciones culturalmente situadas de sistemas formales y de fabricación digital. Cerrando el número, la sección de Creación presenta la obra del artista y compositor colombiano Julián Jaramillo a través de tres proyectos recientes que utilizan tecnologías de localización para enriquecer el espacio urbano con capas sonoras: The Smartphone Ensemble (2015), The AirQ Jacket (2016), y Lumina Nocte (2016). Estos proyectos exploran nuevas formas de interacción con los dispositivos móviles, así como con el espacio urbano, sugiriendo nuevas formas de intervenir y estudiar dichos entornos. Mediante el uso de códigos QR, los lectores de Dearq podrán escuchar fragmentos de estos proyectos.

Los materiales reunidos en Otras computaciones no ofrecen un mapa o catálogo exhaustivo —esto no es posible ni tampoco necesario— sino fragmentos de una imagen compleja en continua evolución. En su conjunto, proponen una reorientación de la investigación arquitectónica y del diseño hacia relatos que en lugar de dar por sentadas desestabilizan la universalidad y centralidad de los sistemas tecnológicos. En resumen, este número nos invita a prestar cuidadosa atención a la especificidad histórica, material y estética de los sistemas informáticos y así cambiar nuestro enfoque de una computación universal hacia computaciones plurales y situadas.
References / Bibliografía


