INVESTIGACION

La seccion de Difusion de Investigacion en Ingenieria, como su
nombre lo indica, pretende divulgar el trabajo de investigacion y
desarrollo que se haga en esta Facultad y otras Facultades de
Ingenieria del pais.

Esperamos que esta seccion pueda servir para aumentar los
mecanismos de comunicaciéon de la comunidad
cientfifico-tecnologica en el pais. Consecuentes con lo anterior
invitamos a investigadores de otras universidades para que usen
este espacio para divulgar resultados que sean de interés para un
sector amplio de la ingenieria.

o far, the applicability of

locally monotonic regression

has been limited by the high
computational costs of the
available algorithms that compute
them. We present a powerful
theoretical result about the nature
of these regressions. As an
application, we give an algorithm
for the computation of lomo-3
regressions which reduces the
complexity of the task, from
exponential fo polynomial.

I. INTRODUCTION

Locally Monotonic Regression (1)
provides a way of smoothing
signals under the smoothness
criterion of local monotonicity,
which sets a restriction on how
often a signal may change trend
(increasing to decreasing, or
viceversa). Deterministically, locally
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monotonic (lomo, for short)
regression provides signals that are
locally monotonic and closest,
under a given semimetric, to a
given signal. Statistically, locally
monotonic regression provides
maximum likelihood estimators (2)
of locally monotonic signals
embedded in noise.

Lomo regression may well prove to
be a useful smoothing tool; up fo
now, a drawback had been the
extremely high computational
costs for computing signals of

reasonable lengths. Previous
algorithms were combinatorial and
had an exponential complexity.

Lomo regressions are obtained
flatting segments of the signal being
regressed. We show here that it is
not necessary to flat segments of
length larger than or equal to 2
(o-1). where o is the desired
degree of local monotonicity. Using
this fact, algorithms with polynomial
complexity may be obtained.

We present one such algorithm
fora = 3.
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Il. BASIC RESULTS

If nis a positive integer, a signal of
length nis an element of R, say
x=[x,..x) If ais q positive
integer, n > «, asignal of length nis
said to be iocally monotonic of
degree a (or lomo-a) if each of its
segments of length «is monotonic.
The locally monotonic regressions
of degree « of a signal x, are the
lomo-a signals in R”that are closest
to x, according to a semimetric for
R”. Here, we consider the
Euclidean metric only.

The constant regressions of a signat
x, are the constant signals of R”
that are closest to x. Under the
Euclidean metric, constant
regressions are unique and the
value of the components of the
constant regression of x is the
average of its components. By
flatting a segment of a signal x, we
mean to replace the segment with
its constant regression, obtaining a
signal of the same length as x. The
locally monotonic regressions of a
signal can be obtained by flatting
non-overlapping segments of the
signal (1).

If x = [x,, ..., x,] is @ signal of length n,
the average of its components is
denoted as p(x) = (x, + ... +x )/n.
Similarly, its constant Euclidean
regression [p(x), ..., p(x)] is denoted
as p(x). If, in addition, y=[y,, ..., y,] 8
asignal of length m, the
concatenation xJy of x and y is the
signal of length n + m given by
[x,.mX,¥,-»¥y 1 fxandy are
signals of length n, we denote the
Euclidean distance between them
as d(x, y).

Lemma:

Let x = [x,, ... x,] be asignal of length
nleta=Ja, ..,aland b=1p, .., b] be
constant signals of length n. If | p(x)
—a| <|p(x) - b|. then d(x, a) < d(x, b).
That is, the closer the level of a
constant signal is to the average of
the components of a given signal,
the closer the constant signalis o
the given signal.
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Proof:

n n
d(x, b) ~ d*(x, 2) = Y (- B2= (- 92

i=1 i=1

=2 (@-2bx+ 69

i=1

n
- Z (x? - 2ax; +a?
i=1

= n(b - p(x)y*-n(a-p(x)}

>0.

Theorem:

in order to get the locally
monotonic regressions of degree a
of asignal, it is not necessary to flat

segments of length larger than or
equoal to 2(a—- 1.

Proof:

Let » and a be positive integers
with n > a; let x be a signal of
length n and let s be a lomo-a
regression of x. Let s =s!| ... [s* be the
segmentation of s info (longest)
constant segments and x = x| ... |x*
be the corresponding partition (not
necessarily into constant segments)
of x. We show that each segment
x\, r € /1, k/, can be segmented into
segments of length no larger
than 2o ~ 3 whose constant
regressions are the corresponding
segments of s.

Let r€/1, K. let mbe the length of
x"and |ef s'=Is,, - 5, 1 then,

Sy = =8, =PX). m<2(a-1),
there is n0fhlng left to prove.
Otherwise, if m>2(a- 1), let 2! =
[, o0 X, ] D€ the initial segment



the Lemma, is closer to x than s is;
this is a contradiction since s is a
regression of x. Then, p(z') = p(x').
Similarly, it can be shown that

p(z2) = p(x); if 2is empty, there is
nothing left to prove. Otherwise, it
remains tfo consider the segments
of 2. Note that since p(x) = p(z' | Z* |
7). p(z') = p(x') and p(z?) = p(x'), then
p(2%) = p(x). Consider two cases: the
case where the length.of z*is less
than 2(a - 1) and the case where it
is larger than or equai to 2(a - 1). In
the first case we are done since z',
zzand Z° are the segments of x'that
are being looked for. In the second
case, expressing Zas ' =y' | ... |y,
where the y”’s are segments of
length larger than or equalto a -1
Fio. 1. A signal of length 256. and less than 2(o - 1), from the

N ) Lemma (and knowing that p(z') =
p(z3) = p(2%) = p(x")) it follows that for j
€/1, g/, p(y) = p(x), otherwise a

lomo-a signal closer to x can be
6t found:; thus, z', 22, y'. ... y?are the
segments of x” being looked for,
and the proof is complete.
4 9
lil. AN APPLICATION
Here, based on the Theorem,
2f we give the main step for a
recursive algorithm that computes
lomo-3 regressions.

. - . e Letx =[x, .., x ] be the input signal
50 0 150 200 250 of/engfhln, of which an oufput
lomo-3 regression signaly is desired.
Let m be the integer part of

m+1)/2
o D NOTERN S . .

Fig. 2. A lomo-3 regression of the signal in Fig. 1. Consider the following 8 ways of
partitioning the signal y intfo three
segments, y =y!|lyjy":

of length a-1 of x and above, it can be shown that the

zZ =[x, ... x,]0etheendng signal I3 y=ly, ..y, .
segment of length o-1 of x". Also,

letz' =[x, ,...x, .., lbethe s =8 L8 pE) | [, o0 S ] 87 I8P Yo=Ix,x 7
intermediate remaining segment of

x"; thus, x’'=2'| 2’| 22 and z°is empty =0 ,..yJ
ifm=2(a-1). is closer to x than s is and therefore

We claim that p(z') = p(x") or, in s"is notlomo-a. Then, [s, ., ... s]is

other words, that the initial nonconstant nondecreasing and

segment of s"of length o1 is the p(zh) <s,<p(x); then the signal, 2 y=ly, ..y, I
constant regression of the

corresponding segment z' of x". By s 15 s o 8 [80 o 5, ] 1870 I8 o X ]
contradiction, assume p(z') # p(x): Y m> 2 m+1
without loss of generality assume where the segment [s, ..., s ] is of ;

that p(z') < p(x’); using the Lemma length a - 1, is lomo-a and, using V=l oy
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Fig. 3.

3 V=l vy, d

y2: [er Xm+11 Xm+2],

V=Y ey Y]

Yol

4. Y=y, ..

Y= Xm+1, Xm+2]

V= Ny Y

5. ye=Uy, .y,

y=[XmA1. Xm Xm+1]

Y =0y Y]

6. y’=[y,,m,ymz],

v=[Xm-1, Xm]

yj = [ym+l' o yL]

7oy =y, vt

Y =[Xm1, Xme2. Xma+3l.

V=Yoo Y]
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A 256-pt signal.

200 250 -
50

150 200 250

Fig. 4. A lomo-3 regression of the signal in Fig. 3.

8 Y= Yl

y¥=[Xm2. Xm1, Xm]

V= Yy o Y

Cases 3 and 4 are considered only
ifn >m+2, cases 5 and & only if

m-] > 1, case 7 only if n >m+3 and
case 8 only ifm-2 > 1.

The algorithm proceeds recursively,
calling itself with input signals y!
and y?* until the signal under
consideration has a length less
than 2. Finally, among the so
obtained signals that turn out to be
lomo-3, one that is closest to x is
chosen.

We ran the algorithms on the 256-
pt signals shown in Figures 1 and 3.
The resulting smoothed signals are
shown in Figures 2 and 4,
respectively.

IV. CONCLUSION

An important result concerning
lomo-a regressions has been
presented. An algorithm for the
computation of lomo-3 regressions
has been described; its complexity
is polynomial rather than
exponential. We have knowledge
of faster (Viterbi-type) algorithms

(3) for computing lomo
approximations with signals defined
on a finite-length alphabet. Since
the complexity of these algorithms
grows with the square of the
cardinality of the alphabet and
since the problem for real valued
signals is solvable, we think steps
that reduce the complexity of
algorithms that compute
regressions, in contrast to digital
regressions, are important. Lomo
regression is a smoothing tool with
applications in one-dimensional
data analysis and in contrast-
preserving image processing, for
example.
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