ILUSTRACIÓN DE LA APLICACIÓN DE LA METODOLOGÍA ARIMA PARA PRONOSTICAR LA DEMANDA DE PRODUCTOS DE CONSUMO MASIVO PARALA LIMPIEZA DEL HOGAR EN EL MERCADO COLOMBIANO.

Sonia Catherine Medina Flechas¹ y Hernando E. Mutis G.²

RESUMEN

Se ilustra el procedimiento para encontrar un modelo que sea útil para obtener pronósticos mensuales de un productos de limpieza en el mercado colombiano. Se hace explícita la metodología de Box y Jenkins para obtener el modelo final con un ejemplo del proceso completo de modelaje. Además, se presenta una comparación entre los niveles pronosticados y realizados extendiendo la utilización de distintos modelos para los diferents productos.

PALABRAS CLAVE

Modelos Arima, metodología de Box y Jenkins, procesos autoregresivos, promedios móviles, estacionalidad, estacionariedad, tendencias, pronósticos.

1. Introducción

Una compañía líder en el mercado de productos de limpieza -con casi un 70 % de participación en el volumen de ventas de esa industria-planteó la necesidad de vincular a un grupo de estudiantes para desarrollar distintas actividades entre las que se planteaba el pronóstico de las diversas presentaciones de su producto. Como fruto de esta relación se realizó el modelaje de pronóstico acorde con cada producto con distintos niveles de éxito.

Una de las decisiones que tiene gran importancia para la firma es programar cuánto y cuándo

producir en cada una de las diferentes fragancias y presentaciones; actualmente se están tomando estas decisiones de acuerdo a las opiniones de 3 ó 4 personas, y, a partir de esas estimaciones individuales, se acuerda en nivel y el tiempo de producción.

En ocasiones, con el uso de la anterior técnica de estimación, se presentan faltantes para cubrir la demanda y en otras, se presentan excesos de inventario. El problema con estos acontecimientos surge con dos variantes: la primera es cuando no hay existencia suficientes de producto para cubrir la demanda de las cadenas y otros clientes. La segunda variante del problema se presenta cuando se plantea una demanda esperada mayor a la demanda real y

Departamento de Ingeniería Industrial, Egresada Maestría Universidad de Los Andes, Bogotá So-medin@uniandes.edu.co

Departamento de Ingeniería Industrial, Profesor Asociado Universidad de Los Andes, Bogotá (Hemutis@uniandes.edu.co)

se alcanzan niveles de inventario excesivos y costosos pues con el paso del tiempo el limpiador pierde sus propiedades originales.

Este trabajo está enfocado a la ejemplificación del diseño de los modelos estadísticos y de series de tiempo que sirven como herramienta para que la firma pueda tener un pronóstico más acertado de la demanda de limpiadores, de manera que los problemas a los que se enfrenta actualmente se reduzcan substancialmente. Pero está centrado en la ilustración de una de las presentaciones del producto, la de 500 ml.

La sección siguiente se ocupa de presentar los modelos teóricos formulados para desarrollar pronósticos, la tercera sección sintetiza la metodología empleada con un énfasis especial al desarrollo metodológico ilustrativo de una presentación en particular. La cuarta sección presenta las principales conclusiones.

2. Los modelos teóricos

Los modelos utilizados son los ARMA y ARIMA. Los primeros, Modelos Autoregresivos y de Promedio Móvil (ARMA, por sus siglas en ingléss) se usan cuando la serie de tiempo debe ser modelada tanto por componentes autoregresivos como por promedios móviles.

La ecuación general para un modelo ARMA de orden (p, q) es:

Donde q_0 es el parámetro constante, cada f_n es el parámetro autoregresivo de orden n, q_n es el parámetro de promedio móvil de orden n, y Y_t __n y e_t_n representan, respectivamente, el valor de la serie de tiempo y el valor del error aleatorio n periodos atrás.

En los modelos ARIMA no solo se tiene en cuenta un componente autoregresivo y uno de promedio móvil, sino también una diferenciación de la serie indicada por la letra I (integración). En general la estructura de un modelo ARIMA para una serie diferenciada $Y_{\rm t}$ es una combinación lineal de los q errores aleatorios y los p valores pasados más recientes de la serie diferenciada; es igual que un modelo ARMA, pero modelando una serie diferenciada en un grado d .

3. Procedimientos y Métodos

Haciendo uso de la estrategia, ya clásica, para la construcción de modelos desarrollada por Box y Jenkis, se procesará cada una de las series siguiendo tres pasos básicos: especificación, ajuste y diagnóstico y el pronóstico.

En la especificación se busca identificar las características básicas de la serie y los modelos que son candidatos para representarla. En el Ajuste y Diagnóstico el objetivo es evaluar el ajuste de diferentes modelos y además estimar los parámetros de modelos que se va a utilizar. En el Pronóstico, elúltimo paso, se pronostican observaciones para la serie en tiempo futuro.

A lo anterior se adicionan dos pasos más, uno antes de iniciar la metodología de Box y Jenkis, en el cual se realizarán algunos cambios en la serie original; y un paso adicional al final de la metodología de Box y Jenkis, en el cual se comparará el pronóstico generado por el modelo con las observaciones reales para tener una medida de ajuste más real.

Con el alistamiento de la serie se busca eliminar de la serie algunas observaciones que por uno u otro motivo distorsionan la variabilidad de la serie. En esta etapa es necesario tomar los datos originales para ubicar dentro de ellos las observaciones que no quedaron registradas y registrarlas; las observaciones que aparezcan como "picos" en la serie y deban reemplazarse por el valor promedio de las observaciones 5 días antes y 5 después. Las observaciones que representen una devolución de producto a la planta de producción tienen valores menores que cero, estas deben ser reemplazadas por el valor cero.

Para finalizar el alistamiento de la serie es necesario excluir de ella las observaciones de las temporadas festivas prolongadas como las dos últimas quincenas del año, las dos primeras quincenas del año, y la quincena en que se presenta la semana santa; y también las observaciones de los domingos. De esta manera se evitará que dicho eventos afecten la variabilidad de la serie.

En cuanto a la especificación se llevaron a cabo cuatro etapas. La primera se basa en la representación visual en la cual, mediante la elaboración de diferentes gráficas, se busca identificar algún comportamiento estacional, una tendencia de la serie u cualquier otro tipo de patrón de comportamiento que la serie pudiera reflejar.

En la segunda etapa, continúa la búsqueda de patrones de comportamiento mediante una inspección visual pero no de las gráficas de las serie, sino de las funciones de autocorrelación, autocorrelación parcial y autocorrelación inversa.

En la tercera etapa se examinan los resultados de las pruebas: Augmented Dickey-Fuller y Pillips Perron; con ellos se busca identificar si la serie es estacionaria o no, y determinar el grado de una posible diferenciación para lograr la estacionareidad de la serie. Además, si las series siguen una tendencia o presentan un patrón de comportamiento estacional, entonces deben ser diferenciadas con el fin de recoger en el modelo este efecto.

La cuarta etapa es la inspección de los métodos ESACF, MINIC y SCAN de SAS, para poder plantear algunos modelos como candidatos a ser los modelos finales.

Dentro del proceso de ajuste y diagnóstico se busca probar el ajuste y la validez de modelos sugeridos como candidatos en el proceso de especificación, al igual que la reforma de algunos de estos modelos para obtener algunos con mejor ajuste y con validez. En este proceso se obtienen los estimadores de los coeficientes de los parámetros del modelo y los estadísticos de ajuste AIC y SBC.

Para comenzar el proceso de ajuste y diagnóstico se utilizó el método de cuadrados mínimos condicionales no lineales para efectuar la estimación de los coeficientes de los parámetros de alguno de los modelos sugeridos en el proceso de especificación. Una vez obtenidos los estimadores se procede a verificar cuáles de ellos son estadísticamente significativos y cuáles están fuertemente autocorrelacionados, con el fin de excluirlos del modelo para obtener finalmente un modelo válido y que además tenga un residuo ruido blanco.

El proceso anterior se efectúa con varios de los modelos sugeridos en el proceso de especificación y, una vez se tienen varios modelos válidos, se lleva a cabo el proceso de pronóstico con cada uno de ellos. Puede darse el caso, de que solo se encuentre un modelo válido.

Dentro del proceso de pronóstico, se pronostican 25 observaciones (equivalentes a un mes, en este caso correspondió al mes de junio) con cada uno de los modelos válidos elegidos en el proceso de ajuste y diagnóstico. Luego se aumentó el conjunto de datos de entrada, con los datos de Junio, Julio, Agosto y Septiembre, para pronosticar 27 observaciones (equivalentes al mes de octubre).

Dentro del proceso de contrastación con los valores actuales se compararon los pronósticos obtenidos con los modelos elegidos en el proceso de ajuste y diagnóstico, con los datos reales de junio, y luego con los datos reales de octubre. Para terminar se eligió el modelo cuyo ajuste, no solo medido en los estadísticos AIC y SBC, sino también en un ajuste*** a los da-

^{**} El ajuste es calculado como la razón entre la cantidad pronosticada y la cantidad real de las ventas de cada referencia en cada uno de los períodos comparados. Así pues, un ajuste del 105% refleja que el pronóstico sobreestimó las ventas en un 5%, y un ajuste del 95% refleja que el pronóstico subestimó las ventas un 5%.

tos reales de junio y octubre fuera el mejor. Se preferirá un mejor ajuste a octubre que uno a junio.

Uso De La Metodología, Ejemplo

La serie elegida para servir como ejemplo del uso de la metodología será serie de tiempo de las ventas totales diarias de limpiador Cleaner Regular en su presentación de 500 ml. Las observaciones fueron tomadas a partir del primero de enero de 2001 hasta el 31 de mayo de 2003.

Para comenzar, se examinará la serie original, esta se ilustra en la Figura No. 1. En ella se ven algunas observaciones negativas que deben ser corregidas. Además hay días que no tienen observaciones (porque no hubo despachos) y están incluidas algunas temporadas festivas que

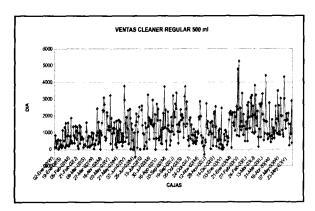


Figura No. 1. Gráfica de la serie original de las ventas totales diarias de limpiador Cleaner Regular en su presentación de 500ml.

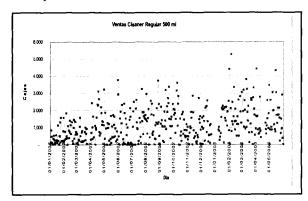


Figura No. 2 Gráfica de la serie corregida de las ventas totales diarias de limpiador Cleaner Regular en su presentación de 500ml.

distorsionan la variabilidad de la serie. Después de llevar a cabo el proceso de alistamiento de la serie, esta queda tal y como se puede ver en la Figura No. 2.

El paso siguiente será realizar una inspección visual para intentar identificar la existencia de un patrón de comportamiento estacional ya sea diario, semanal, quincenal o mensual.

En la Figura No. 2 no es posible identificar con facilidad algún comportamiento estacional diario concreto, por inspección gráfica no es posible percibir patrón alguno. De igual manera se graficaron las observaciones para periodos mensuales y semanales sin encontrar ningún patrón representativo. Visualmente se podría decir que la serie presenta una tendencia positiva.

A continuación se presentan las salidas de los resultados y su respectiva interpretación.

Name	of	Variable	e =	Regular	500
Mean	of	Working	Ser	ies	1196.512
Stand	lard	d Deviati	on		948.9461
Numbe	r	of Observ	ati	ons	419

				Autocorrelations			
Lag	Covariance	Correlation	- 1	987654321	0	1 2 3 4 5 6 7 8 9 1	Std Error
0	900499	1.00000	- 1			* * * * * * * * * * * * * * * * * *	0
1	194115	0.21556	- 1		. '	****	0.048853
2	59934.124	0.06656	- 1		.	[*.	0.051073
3	178434	0.19815	- 1		,	****	0.051279
4	122669	0.13622	- 1		.	* * *	0.053075
5	107426	0.11930	İ		.	**	0.053903
6	203656	0.22616	i		.	*****	0.054530
7	178964	0.19874	- 1			****	0.056724
8	90090.712	0.10005	- 1			••	0.058362
9	79768.738	0.08858	1			**	0.058770
10	111205	0.12349				* *	0.059088
11	165078	0.18332	Ì		. 1		0.059701
12	122330	0.13585	- 1		.	***	0.061030
13	113259	0.12577	1		,	***	0.061747
14	117136	0.13008	- 1		.	***	0.062356
15	53853.599	0.05980	- 1			* .	0.063000
16	50166.203	0.05571	- 1			l* .	0.063135
17	170859	0.18974					0.063252
18	128907	0.14315			- 1		0.064596
19	45281.424	0.05028				* .	0,065349
20	66005.948	0.07330	- 1			l* .	0.065441
21	60765.568	0.06748					0.065637
22	29689.279	0.03297	- 1				0.065802
2.3	75202.245	0.08351	1	,		**.	0.065842
24	80928.641	0.08987			- 1	••.	0.066094
25	5761.216	0.00640			- 1		0.066385
26	13958.505	0.01550	- 1				0.066387
27	52571.707	0.05838			- 1	* .	0.066395
28	75034.986	0.08333	- 1		- 1	**.	0.066518
29	114063	0.12667	Į		- 1	***	0.066766
30	112588	0.12503	- 1		- 1	***	0.067337

«.» marks two standard errors

La función de autocorrelación presenta algunos picos aproximadamente cada 6 rezagos, lo cual podría sugerir un comportamiento estacional de la serie, con una estacionalidad de 6 periodos, que puede interpretarse como un periodo estacional equivalente a una semana (de seis días ya que no se toman en cuenta los días Domingo).

La función de autocorrelación parcial a pesar de que no refleja un comportamiento claro de la naturaleza de la serie, si presenta picos en los rezagos 1, 3 y 6.

Teniendo en cuenta que es posible encontrar una estacionalidad de 6 periodos y que, además, una inspección visual previa reflejó una tendencia creciente de las ventas de Cleaner Regular 500ml, es conveniente aplicar el Test Aumentado de Dickey – Fuller estacional para verificar si la serie requiere ser diferenciada o no.

	Seasonal 2	Augmented I	Dickey-Ful	ler Unit Root	Tests	
Туре	Lags		Rho Pr	< Rho	Tau I	r≺ Tau
Zero Mean	0	292.8305	0.999	99 20.18	0.9	1999
	1	-131.824	0.000	01 -8.74	<.0	001
	2	-119.357	0.000	01 -8.23	<.0	001
	3	-132.491	0.000	01 -8.75	<.0	001
Single Mear	0 4	94.7532	0.99	99 4.78	0.9	9999
-	1	-325.305	0.000	01 -16.31	<.0	001

Podemos observar que el test nos impide rechazar la hipótesis nula que plantea que hay una raíz unitaria, bajo esta condición el proceso no converge. En este caso entonces se puede sugerir una diferenciación en un periodo para envolver el efecto de la tendencia positiva, con una duración 6, para recoger el efecto estacional.

		Name of Variab	Le = Re	egular!	500					
		Period(s) of D	iffere	ncing					1,6	
				ntocor	1					
Lag	Covariance	Correlation		8 7 6				٥	1 2 3 4 5 6 7 8 9 1	Std Error
0	2584025	1.00000	1.	0 / 0				ĭ	*********	1 0
	-1100837	42602	- 1				***	ı.		0.049266
1								- 1		
2	-379018	14668	- 1				**	١.		0.057517
3	214145	0.08287						-	**	0.058418
4	200359	0.07754	İ					İ	**	0.058702
5	229626	0.08886	i					İ	••	0.058951
6	-1122737	43449	i		• •	• • •		٠į		0.059275
7	718474	0.27804	i					Ì	*****	0.066558
8	24852.862	0.00962	i					Ĺ		0.069320
9	-213136	08248	i				. *	٠		0.069323
10	133341	0.05160	1					į.	• .	0.069561
11	153518	0.05941	Ĺ					Ĺ	* .	0.069653
12	-233543	09038	1				. *	١		0.069776

La función de autocorrelación de la serie diferenciada muestra un comportamiento estacionario, y, además, presenta picos en los rezagos 1, 2, 6, 7. La gráfica da como sugerencia un modelo MA, quizás multiplicativo pues los picos en 6 y 7 llevan direcciones opuestas.

Después de realizar las pruebas, tanto el Augmented Dickey-Fuller Unit Root Tests como el Phillips-Perron Unit Root Tests rechazan la hipótesis nula, que plantea que la serie no es estacionaria porque hay una raíz unitaria. Entonces podemos afirmar que la serie diferenciada es estacionaria y puede ser modelada con un modelo ARIMA.

De acuerdo a la etapa de especificación, para la etapa de diagnóstico y ajuste un modelo candidato tendría la siguiente forma ARIMA con orden así:

- Orden Parte Auto regresiva (p): 12.
- Orden Parte Promedio móvil (q): (1,2) (6,12,24).
- Orden de Integración : (1,6).

Ahora se inicia la etapa de ajuste y diagnóstico:

			Condi	t ione i	Tenet	Scores	Estimation			
			-			indard		Approx		
	Par	amete	r Esti	mate		Error	t Value	Pr > t	Lag	
	MA1	.1	-0.1	2785	0.	15704	-0.81	0.4160	ī	
	MA.1	. 2	0.7	0330	0.	15056	4.67	< .0001	2	
	MA2	.1	-0.0	5555	0.	03065	-1.81	0.0706	6	
	MA2	.2	0.9	3538	0.	06153	15.20	<.0001	12	
	MA2	, 3	0.009	0694	0.	05465	0.17	0.8683	24	
	AR1	.1	-0.9	2585	0.	16118	-5.74	< .0001	1	
	AR1	,2	-0.1	9050	0.	14145	-1.35	0.1788	2	
	AR1	,3	-0.1	4319	0.	12856	-1.11	0.2660	3	
	AR1	. 4	-0.0	3786	0.	11658	-0.32	0.7455	4	
	AR1	,5	-0.1	3507	0.	09617	-1.40	0.1609	5	
	AR1	, 6	-1.0	8215	0.	06460	-16.75	<.0001	6	
	AR1	,7	-0.9	3284	0.	16154	-5.77	<.0001	7	
	AR1	, В	-0.1	9752	. 0.	14215	-1.39	0.1654	8	
	AR1	, 9	-0.1	2316	0.	12988	-0.95	0.3435	9	
	AR1	,10	-0.0	3070	O.	11623	-0.26	0.7918	10	
	AR1	,11	-0.1	3232	0.	09651	-1.37	0.1711	11	
	AR1	,12	-0.1	1821	0.	05981	-1.98	0.0488	12	
				Audoon	naladion (Check of Re	widowski			
To	Chi-		Pr			CIRCLE OF INC				
Lag	Square		DF Chis		-	Autoco	orrelations-			
	0.00	0	< .0001	0.00	12	0.001	-0.005	-0.006	0.004	0.023
	0.00	0	< .0001	-0.00	5 -	0.036	-0.041	0.016	0.079	-0.002
	8.60	1	0.0034	-0.00)1	0.036	-0.049	-0.016	0.063	-0.033
	10.78	7	0.1486	-0.04	15 -	0.001	-0.009	-0.000	0.009	-0.050
	26.26	13	0.0157	-0.15	8 -	0.000	0.023	0.012	0.087	-0.013
	32.17	19	0.0299	0.02	13	0.013	0.006	0.064	-0.049	-0.072
	35.65	25	0.0771	-0.00	14	0.015	0.012	0.028	0.056	0.054
	39.81	31	0.1334	0.01	9	0.047	0.043	0.012	0.062	-0.006

En este intento no se encuentra el modelo deseado. Varios de los estimadores no son estadísticamente significativos, en la parte MA solo son significativos los rezagos 2, 6 y 12, mientras el la parte AR solo son estadísticamente significativos los rezagos 1, 6, 7 y 12. Por otra parte hay autocorrelación fuerte entre varios parámetros y la hipótesis de ruido blanco es fuertemente rechazada.

Se realizaron varios intentos hasta lograr encontrar un modelo válido. En el último intento todos los parámetros son estadísticamente significativos, no hay autocorrelación entre ellos y además no se rechaza la hipótesis nula que indica la presencia de ruido blanco en los residuales del modelo. En conclusión este modelo podría servir para pronosticar las ventas diarias de Cleaner Regular 500ml.

El modelo queda así:

- Orden Parte Auto regresiva (p): (1).
- Orden Parte Promedio móvil (q): (2) (6).
- Orden de Integración : (1,6).

Condit	ional Least Squ	ares Estin	ation						
					Standard		Approx		
	Pa	rameter	Est	imate	Error	t Value	Pt > t	Lag	
	MA	1,1	0.	73626	0.04416	16.67	< .0001	2	
	MZ	12,1	0.	94044	0.01850	50.82	<.0001	6	
	AF	21,1	-0.	79853	0.03726	-21.43	< .0001	1	
			,	Variance:	Estimate	833679.1			
				Std Error	Estimate	913.0603			
				AIC		7184.555			
				SBC		7196.788			
			1	Number of	Residuals	436			
			* AIC a	nd SBC do	not includ	le log deter	minant.		
	Corn	elations of	Parameter E	timates					
			meter	MA1,1	MA2,1	AR1,1			
		MA1		1.000	-0.342	-0.623			
		MA2		-0.342	1.000	0.150			
		AR1	,1	-0.623	0.150	1.000			
	Autocorrela	ation Chec	k of Residual	s					
To	Chi-		Pr >						
Lag	Square	DF	ChiSq		-Autocorr	elations			
6	6.31	3	0.0973	-0.013	-0.056	0.034	0.038	-0.075	0.052
12	10,96	9	0.2787	0.032	-0.013	-0.026	0.043	0.077	-0.025
18	18.17	15	0.2538	0.035	0.029	-0.055	-0.034	0.092	-0.035
24	22.12	21	0.3928	-0.062	0.037	-0.002	-0.008	0.015	-0.055
30	35.19	27	0.1341	-0.139	-0.016	0.034	-0.003	0.085	0.008
36	41.99	33	0.1357	0.009	0.021	0.002	0.068	-0.048	-0.082
42	46.40	39	0.1936	0.017	0.008	0.017	0.026	0.073	0.050
48	49.93	45	0.2840	0.010	0.055	0.031	0.009	0.054	-0.006
				Model fo	r variable Regi	dar500			
			ferencing 1,0						
	No	mean term	in this model.						
	A	utoregressi	ve Factors						
	Fac	tor 1: 1+6	0.79853 B**(1)					
	M	loving Ave	rage Factors						
	Fac	tor 1: 1 - 0	.73626 B**(2))					
	Fac	tor 2: 1 - 0	.94044 B**(6))					

Con este modelo se efectuó el pronóstico de las ventas para los meses de Junio y Octubre.

En la siguiente tabla se presenta la comparación para cada uno de los dos meses que sirven como periodos de prueba; el ajuste a las ventas reales mensuales muestra 100% y 97%, para Junio y Octubre respectivamente, lo indica que el modelo es razonablemente "bueno" y que no es necesario continuar en la búsqueda de una especificación alternativa.

Comparaciones entre niveles pronosticados y actuales

	Regular 500	
AR	///////////////////////////////////////	1
MA /	4444444	(2) (6)
	///////////////////////////////////////	(1,6).
INT	<i>411111111111</i>	NO -
AIC /		7184
SBC /	44444111111111111111111111111111111111	7196
AJUSTE /		100%
White Noise	<i>44441</i> 411111	
Fecha	JUNIO REAL	PRONÓSTICO
02-Jun-03	0	1029
03-Jun-03	1251	1302
04-Jun-03	2674	1688
05-Jun-03	2143	1406
06-Jun-03	278	1388
07-Jun-03	1792	729
09-Jun-03	180	963
10-Jun-03	1423	1347
11-Jun-03	2700	1644
12-Jun-03	1612	1432
13-Jun-03	1147	1359
14-Jun-03	790	745
16-Jun-03	1723	943
17-Jun-03	2758	1355
18-Jun-03	1796	1629
19-Jun-03	371	1436
20-Jun-03	854 920	1348
21-Jun-03 23-Jun-03	920	746 934
23-Jun-03 24-Jun-03	1010	934 1354
24-Jun-03 25-Jun-03	1744	1622
26-Jun-03	1744	1622
26-Jun-03 27-Jun-03	2384	1434
28-Jun-03	60	742
30-Jun-03	0	929
Parcial 15	U	94%
Parcial 7		93%

	Regular 500	
AR	111111111111111111111111111111111111111	1
MA		(2).(6)
D	441444141	(1,6)
INT	44444444	. NO
AIC		8490
SBC	//////////////////////////////////////	8503
AJUSTE	//////////////////////////////////////	97%
White Noise	///////////////////////////////////////	
Fecha	OCTUBRE REAL	PRONÓSTICO
01/10/2003	1224	1928
02/10/2003	1542	1412
03/10/2003	757	1394
04/10/2003	200	839
06/10/2003	265	1196
07/10/2003	2417	1431
08/10/2003	1482	1883
09/10/2003	3090	1434
10/10/2003	1519	1360
11/10/2003	180	852
13/10/2003	0	1170
14/10/2003	2737	1437
15/10/2003	683	1862
16/10/2003	2359	1436
17/10/2003	918	1343
18/10/2003	1970	850
20/10/2003	1215	1156
21/10/2003	2476	1434
22/10/2003	711	1850
23/10/2003	1330	1431
24/10/2003	638	1332
25/10/2003	36	844
27/10/2003	3841	1146
28/10/2003	1747	1427
29/10/2003	407	1840
30/10/2003	3675	1424
31/10/2003	838	1323
Parcial 15		106%

4. RESULTADOS Y MODELOS FINALES.

La aplicación de la metodología presentada en la sección anterior a más de cuarenta presentaciones del productos arrojó resultados muy interesantes. En el cuadro siguiente se incluye el ajuste a las ventas mensuales reales del mes de octubre para 11 presentaciones del producto con su respectivo ajuste a las ventas mensuales reales del mes de Octubre. La columna etiquetada AR se refiere al orden del proceso autorregresivo; la siguiente, al orden del promedio móvil. La columna encabezada por la D se refiere al tipo de diferenciación realizada para resolver tendencia y estacionalidad. La columna del intercepto informa si se justifica la presencia del intercepto en el modelo y la última columna se refiere al nivel de precisión del pronóstico.

Cuadro Resumen

1	CANAL	Serie	AR	MA	0	Intercepto	AJUSTE
1		REGULAR 500ml	1	(2)(6)	(1,6)	NO	97%
2		LA JOYA 500ml	(1,2,3,6)	(1,2,3,6)	0	SI	109%
3		REGULAR 900+100ml	1	(1,6)	0	SI	128%
4		REGULAR 2000ml	(2,4,6)	(1)(6)	1	NO	98%
5		LIMON 500ml	(4)	(1,4,5)	1	NO	105%
6	Total	FLORAL 500ml	(2,3,4)	(1,4,5)	1	NO	107%
7		LAVANDA 500ml	5	(1)(6)	(1,6)	SI	113%
8		LIMON 2000ml	(1,2,3,4,6)	(2,3,4,6)	0	SI	110%
9		FLORAL2000ml	(12)	0	0	SI	113%
10		LAVANDA 2000ml	(8,11)	0	0	SI	114%
11		OTRAS	(1,2,3,4)	(5)(6.24)	(1.6)	NO.	105%

4. COMENTARIOS FINALES

Para las ventas de los limpiadores no se detectó ningún patrón de comportamiento general para las distintas referencias: cada una responde a un proceso particular con niveles diferentes de estacionalidad y /o estacionariedad. La metodología de Box y Jenkis fue aplicada y ejemplificada y como resultado se obtuvieron pronósticos satisfactorios en varias presentaciones

Aunque unos modelos presentan mejor ajuste que otros para el periodo de comparación, en general el ajuste fue muy bueno. Algunos lograron un ajuste cercano al 100% de las ventas

mensuales, este ajuste es más importante que un ajuste diario, ya que la planta de producción no se programa día a día sino mensualmente; por lo anterior es posible afirmar que los modelos pueden dar la solución que la empresa estaba buscando para tener una herramienta objetiva para programar su planta de producción.

Mientras que no se presenten cambios sorpresivos ni radicales en el comportamiento del mercado de los limpiadores colombianos, estos modelos pueden ser utilizados por la empresa para pronosticar las ventas futuras de sus limpiadores, a un plazo de un mes, retroalimentando el modelo respectivo.