Hunting an unknown molecule: The compelling need to discover novel antiviral drugs against SARS-CoV-2
No. 50 (2020-06-01)Author(s)
-
Andrés Felipe Vásquez1. Investigador postdoctoral, Departamento de Ingeniería Química y de Alimentos, Universidad de los Andes. Contacto: af.vasquez231@uniandes.edu.co
-
Yasser Hayek Orduz2. Estudiante de último año de pregrado, Departamento de Ingeniería Química y de Alimentos, Universidad de los Andes. Contacto: y.hayek10@uniandes.edu.co
-
Felipe Sierra Hurtado3. Estudiante de último año de pregrado, Departamento de Ingeniería Química y de Alimentos, Universidad de los Andes. Contacto: f.sierra10@uniandes.edu.co
-
Luke E. Achenie4. Profesor Titular, Departamento de Ingeniería Química, Instituto Politécnico y Universidad Estatal de Virginia (Virginia Tech), EEUU. Contacto: achenie@vt.edu
-
Andrés González Barrios5. Director y Profesor asociado, Departamento de Ingeniería Química y de Alimentos, Universidad de los Andes. Contacto: andgonza@uniandes.edu.co
Abstract
For almost a year, humanity has been threatened by the new coronavirus known as SARS-CoV-2, which originated in China, and from there has spread to almost all regions around the globe. The incidence and mortality of this dangerous virus, which have recently increased in countries like Colombia, has overwhelmed public health systems and has created enormous difficulties and challenges at the economic, social, and political levels. With the aim of quickly finding treatment alternatives, running parallel to prevention initiatives spurred by the arrival of an effective vaccine, computational biology and computer-aided technologies have now been playing a booming role and have rapidly positioned themselves as key players in the pharmaceutical industry. This paper presents the main findings of a study focused on designing and discovering new agents with inhibitory capacity against the new coronavirus, describing the methodological strategy employed and presenting the implications, challenges, and future perspectives associated with finding a molecule with promising therapeutic potential.
References
“OMS | Nuevo coronavirus - China,” WHO, 2020.
“Naming the coronavirus disease (COVID-19) and the virus that causes it.” .
“Alocución de apertura del Director General de la OMS en la rueda de prensa sobre la COVID-19 celebrada el 11 de marzo de 2020.” .
E.Callaway, H.Ledford, and S.Mallapaty, “Six months of coronavirus: the mysteries scientists are still racing to solve,” Nature, vol. 583, no. 7815, pp. 178–179, 2020.
E.Rodríguez Mega, “Latin American scientists join the coronavirus vaccine race: ‘No one’s coming to rescue us,’” Nature, vol. 582, no. 7813, pp. 470–471, 2020.
F.Prieto-Martínez and J.Medina-Franco, “Computer-aided drug design: when informatics, chemistry and art meets,” TIP. Rev. Espec. en ciencias químico-biológicas, vol. 21, no. 2, pp. 124–134, 2018.
Z.Jinet al., “Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,” Nature, vol. 582, no. 7811, pp. 289–293, 2020.
S. R.Langdon, J.Blagg, and N.Brown, “Scaffold diversity in medicinal chemistry space,” in Scaffold Hopping in Medicinal Chemistry, 2013, pp. 39–60.
J.Gu, Y.Gui, L.Chen, G.Yuan, H.Lu, and X.Xu, “Use of Natural Products as Chemical Library for Drug Discovery and Network Pharmacology,” vol. 8, no. 4, pp. 1–10, 2013.
B. A. P.Wilson, C. C.Thornburg, C. J.Henrich, T.Grkovic, and B. R.O’Keefe, “Creating and screening natural product libraries,” Nat. Prod. Rep., 2020.
S. R. 2019-3, “Maestro, Schrödinger, LLC, New York, NY, 2019.”
S. S.Ou-Yang, J. Y.Lu, X. Q.Kong, Z. J.Liang, C.Luo, and H.Jiang, “Computational drug discovery.,” Acta Pharmacol. Sin., vol. 33, no. 9, pp. 1131–40, 2012.
D. B.Kitchen, H.Decornez, J. R.Furr, and J.Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications.,” Nat. Rev. Drug Discov., vol. 3, no. 11, pp. 935–49, Nov. 2004.
A. C.Anderson, R. H. O.Neil, T. S.Surti, and R. M.Stroud, “Approaches to solving the rigid receptor problem by identifying a minimal set of £ exible residues during ligand docking 1,” vol. 8, 2001.
J. H.Jensen, Molecular Modeling Basics, vol. 53, no. 9. 2013.
S.Genheden and U.Ryde, “The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities,” Expert Opin. Drug Discov., vol. 10, no. 5, pp. 449–461, 2015.
T. A.Binkowski, S.Naghibzadeh, and J.Liang, “CASTp: Computed Atlas of Surface Topography of proteins,” Nucleic Acids Res., vol. 31, no. 13, pp. 3352–3355, 2003.
J.Dundas, Z.Ouyang, J.Tseng, A.Binkowski, Y.Turpaz, and J.Liang, “CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues,” Nucleic Acids Res., vol. 34, no. WEB. SERV. ISS., pp. 116–118, 2006.
M.Karaman, “Pharmacophore Analyses of SARS-CoV-2 Active Main Protease Inhibitors Using Pharmacophore Query and Docking Study,” Jun. 2020.
M. J.Abrahamet al., “Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX, vol. 1–2, pp. 19–25, 2015.
D.Van Der Spoel, E.Lindahl, B.Hess, G.Groenhof, A. E.Mark, and H. J. C.Berendsen, “GROMACS: Fast, flexible, and free,” J. Comput. Chem., vol. 26, no. 16, pp. 1701–1718, 2005.
S.Saberi Fathi and J. A.Tuszynski, “A simple method for finding a protein’s ligand-binding pockets,” BMC Struct. Biol., vol. 14, no. 1, p. 18, 2014.
G.Wolber and T.Langer, “LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters,” J. Chem. Inf. Model., vol. 45, no. 1, pp. 160–169, 2005.
G.Wolber, “LigandScout Automated Structure-Based Pharmacophore Model Generation Pharmacophores from LigandScout,” Spring, vol. 2005, 2005.
M. P. A.Sanderset al., “From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling,” Med. Chem. Commun., vol. 3, no. 1, pp. 28–38, 2012.
I.Wallach, “Pharmacophore inference and its application to computational drug discovery,” Drug Dev. Res., vol. 72, no. 1, pp. 17–25, 2011.