La difusión de la extracción agrícola de agua subterránea en São Paulo, Brasil: El papel de la variabilidad climática y la preservación ambiental
No. 98 (2024-10-31)Autor/a(es/as)
-
Daniel Morales MartínezInvestigador Académico. Núcleo de Economía Agrícola y del Medio Ambiente. UNICAMP/Brazil
-
Alexandre Gori MaiaUniversity of Campinas, BrazilIdentificador ORCID: https://orcid.org/0000-0003-0075-5094
-
Junior Ruiz GarciaFederal University of Parana, BrazilIdentificador ORCID: https://orcid.org/0000-0002-9625-3859
Resumen
En Brasil, la producción agrícola depende cada vez más de la extracción de agua subterránea. Ello genera preocupaciones sobre la sostenibilidad de las reservas subterráneas. Así pues, este artículo compara la difusión de los dos tipos de pozo más comunes para extraer agua del subsuelo para la agricultura, en el estado de São Paulo: convencional (baja profundidad) y tubular (alta profundidad). Se usaron datos longitudinales de nivel municipal y modelos de panel espacial, a fin de analizar los dos principales estimuladores de la extracción de agua subterránea: la variabilidad climática (aridez) y la conservación ambiental (agricultura de conservación y conservación de flora nativas). Los resultados destacan que la creciente aridez en la estación seca (invierno) ha reducido la difusión de pozos convencionales y ha aumentado la difusión de pozos tubulares menos sostenibles. A su vez, las prácticas de conservación del suelo y los bosques nativos reducen la necesidad de extracción de aguas subterráneas profundas.
Referencias
1. Akie, M., Ezaki, S., 2012. As Águas Subterrâneas do Estado de São Paulo, Cadernos de Educação Ambiental - Secretaria do Meio Ambiente.
2. Ambrizzi, T., Coelho, C., 2018. A crise hídrica e a seca de 2014 e 2015 em São Paulo: Contribuições do clima e das atividades humanas, in: A CRISE HÍDRICA NA REGIÃO METROPOLITANA DE SÃO PAULO EM 2013-2015: Origens, Impactos e Soluções, LIVRO BRANCO DA ÁGUA. São Paulo, p. 175.
3. Anselin, L., 2010. Local Indicators of Spatial Association-LISA. Geographical Analysis 27, 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
4. Anselin, L., 2003. Spatial Externalities, Spatial Multipliers, And Spatial Econometrics. International Regional Science Review 26, 153–166. https://doi.org/10.1177/0160017602250972
5. Anselin, L., 2001. Spatial econometrics, in: Baltagi, B.H. (Ed.), A Companion to Theoretical Econometrics. Blackwell Publishing Ltd, New York, pp. 310–330.
6. Batagelj, V., Doreian, P., Ferligoj, A., Kejžar, N., 2014. Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution, Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution. wiley, Noida. https://doi.org/10.1002/9781118915370
7. Bell, K.P., Bockstael, N.E., 2000. Applying the generalized-moments estimation approach to spatial problems involving microlevel data. Review of Economics and Statistics 82, 72–82. https://doi.org/10.1162/003465300558641
8. Brauman, K.A., Freyberg, D.L., Daily, G.C., 2012. Land cover effects on groundwater recharge in the tropics: ecohydrologic mechanisms. Ecohydrology 5, 435–444. https://doi.org/10.1002/eco.236
9. Côrtes, P.L., Torrente, M., Pinto Alves Pinto, A., Ruiz, M.S., Dias, A.J.G., Rodrigues, R., Côrtes, P.L., Torrente, M., Pinto Alves Pinto, A., Ruiz, M.S., Dias, A.J.G., Rodrigues, R., 2015. Crise de abastecimento de água em São Paulo e falta de planejamento estratégico. Estudos Avançados 29, 7–26. https://doi.org/10.1590/S0103-40142015000200002
10. Costa, A.F., Rozza, G., 2015. Recursos Hídricos Subterrâneos: Análise de Poços de Rodeio (SC). Revista Eletrônica do Alto Vale do Itajaí 3, 78–81. https://doi.org/10.5965/2316419003042014078
11. DAEE, UNESP, 2013. Águas subterrâneas no Estado de São Paulo: Diretrizes de utilização e proteção, Secretaria de Saneamento e Recursos Hídricos. São Paulo.
12. Dakhlalla, A.O., Parajuli, P.B., Ouyang, Y., Schmitz, D.W., 2016. Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed. Agricultural Water Management 163, 332–343. https://doi.org/10.1016/j.agwat.2015.10.001
13. De Girolamo, A.M., Bouraoui, F., Buffagni, A., Pappagallo, G., Lo Porto, A., 2017. Hydrology under climate change in a temporary river system: Potential impact on water balance and flow regime. River Research and Applications 33, 1219–1232. https://doi.org/10.1002/rra.3165
14. De Groot, R.S., Wilson, M.A., Boumans, M.J., 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41, 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7
15. Dell, M., Jones, B.F., Olken, B.A., 2014. What do we learn from the weather? The new climate-economy literature. Journal of Economic Literature. https://doi.org/10.1257/jel.52.3.740
16. EPA, 2020. Groundwater.
17. Famiglietti, J.S., 2014. The global groundwater crisis. Nature Climate Change 4, 945–948. https://doi.org/10.1038/nclimate2425
18. FAO, 2003. Review of World Water Resources by Country, 1st ed. Food and Agriculture Organization of the United Nations - FAO, Rome.
19. Ferreira, J.L., Ruffoni, J., Carvalho, A.M., 2018. Dinâmica da difusão de inovações no contexto brasileiro. Revista Brasileira de Inovação 17, 175–200. https://doi.org/10.20396/rbi.v16i4.8650852
20. Fingleton, B., 2008. A generalized method of moments estimator for a spatial panel model with an endogenous spatial lag and spatial moving average errors. Spatial Economic Analysis 3, 27–44. https://doi.org/10.1080/17421770701774922
21. Gaber, M., 2005. Michigan Flowing Well Handbook, Michigan Department of Environmental Quality Water Bureau.
22. Genius, M., Koundouri, P., Nauges, C., Tzouvelekas, V., 2014. Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects. American Journal of Agricultural Economics 96, 328–344. https://doi.org/10.1093/ajae/aat054
23. Gori Maia, A., Miyamoto, B.C.B., Garcia, J.R., 2018. Climate Change and Agriculture: Do Environmental Preservation and Ecosystem Services Matter? Ecological Economics 152, 27–39. https://doi.org/10.1016/j.ecolecon.2018.05.013
24. Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H., Aureli, A., 2011. Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2011.05.002
25. Haldorsen, S., Heim, M., Van Der Ploeg, M., 2011. Impacts of climate change on groundwater in permafrost areas: Case study from Svalbard, Norway, in: Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations. CRC Press, pp. 323–338. https://doi.org/10.1201/b11611-26
26. Hardin, G., 1968. The tragedy of the commons. The population problem has no technical solution; it requires a fundamental extension in morality. Science (New York, N.Y.) 162, 1243–8. https://doi.org/10.1126/SCIENCE.162.3859.1243
27. Healy, R.W., Cook, P.G., 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal 10, 91–109. https://doi.org/10.1007/s10040-001-0178-0
28. Hirata, R., Conicelli, B.P., 2012. As águas subterrâneas e sua importância ambiental e econômica para o Brasil. Anais da Academia Brasileira de Ciências 84, 297–312. https://doi.org/10.11606/9788563124074
29. Hirata, R., Suhogusoff, A.V., Marcellini, S.S., Villar, P.C., Marcellini, L., 2019. Estudos de Águas Subterrâneas. São Paulo.
30. Hornbeck, R., Keskin, P., 2014. The Historically Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought. American Economic Journal: Applied Economics 6, 190–219. https://doi.org/10.1257/app.6.1.190
31. IBGE, 2020. Sistema IBGE de Recuperação Automática - SIDRA [WWW Document]. IBGE – Instituto Brasileiro de Geografia e Estatística.
32. IBGE, 2018a. Censo Agro 2017: resultados preliminares mostram queda de 2,0% no número de estabelecimentos e alta de 5% na área total. [WWW Document]. Agência IBGE - Notícias. URL https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/21905-censo-agro-2017-resultados-preliminares-mostram-queda-de-2-0-no-numero-de-estabelecimentos-e-alta-de-5-na-area-total
33. IBGE, 2018b. Produção Agrícola Municipal 2018, Instituto Brasileiro de Geografía e Estatística.
34. IBGE, 2009. Censo Agropecuário 2006 - Brasil, grandes regiões e unidades da federação., Instituto Brasileiro de Geografía e Estatística. Rio de Janeiro.
35. INMET, 2017. Portal do INMET - Instituto Nacional de Meteorologia [WWW Document].
36. Jasechko, S., Birks, S.J., Gleeson, T., Wada, Y., Fawcett, P.J., Sharp, Z.D., McDonnell, J.J., Welker, J.M., 2014. The pronounced seasonality of global groundwater recharge. Water Resources Research 50, 8845–8867. https://doi.org/10.1002/2014WR015809
37. Kassam, A., Friedrich, T., Derpsch, R., 2019a. Global spread of Conservation Agriculture. International Journal of Environmental Studies 76, 29–51. https://doi.org/10.1080/00207233.2018.1494927
38. Kassam, A., Friedrich, T., Derpsch, R., 2019b. Global spread of Conservation Agriculture. International Journal of Environmental Studies 76, 29–51. https://doi.org/10.1080/00207233.2018.1494927
39. Khair, S.M., Mushtaq, S., Reardon-Smith, K., Ostini, J., 2019. Diverse drivers of unsustainable groundwater extraction behaviour operate in an unregulated water scarce region. Journal of Environmental Management 236, 340–350. https://doi.org/10.1016/j.jenvman.2018.12.077
40. Klocke, N.L., Watts, D.G., Schneekloth, J.P., Davison, D.R., Todd, R.W., Parkhurst, A.M., 1999. Nitrate leaching in irrigated corn and soybean in a semi-arid climate. Transactions of the ASAE 42, 1621–1630. https://doi.org/10.13031/2013.13328
41. Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J.J., Kupfersberger, H., Kværner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., Uvo, C.B., Velasco, E., Pulido-Velazquez, M., 2014. Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology 518, 250–266. https://doi.org/10.1016/j.jhydrol.2013.06.037
42. Koch, C., Nax, H., 2017. Groundwater usage: Game theory and empirics.
43. Krishnaswamy, J., Bonell, M., Venkatesh, B., Purandara, B.K., Rakesh, K.N., Lele, S., Kiran, M.C., Reddy, V., Badiger, S., 2013. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis.” Journal of Hydrology 498, 191–209. https://doi.org/10.1016/j.jhydrol.2013.06.034
44. Lee, L., Lawrence, D., Price, M., 2006. Analysis of water-level response to rainfall and implications for recharge pathways in the Chalk aquifer, SE England. Journal of Hydrology 330, 604–620. https://doi.org/10.1016/j.jhydrol.2006.04.025
45. Lee, L.-F., 2004. Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models. Econometrica 72, 1899–1925. https://doi.org/10.1111/j.1468-0262.2004.00558.x
46. LeSage, J.P., 2008. An Introduction to Spatial Econometrics. Revue d’économie industrielle n° 123, 19–44.
47. LeSage, J.P., Pace, R.Kelley., 2009. Introduction to spatial econometrics. CRC Press.
48. Li, H., Zhao, J., 2018. Rebound effects of new irrigation technologies: The role of water rights. American Journal of Agricultural Economics 100, 786–808. https://doi.org/10.1093/ajae/aay001
49. Lucas, M., Oliveira, P.T.S., Melo, D.C.D., Wendland, E., 2015. Evaluation de données de télédétection pour estimer la recharge d’une zone d’affleurement du Système Aquifère de Guarani (Amérique du Sud). Hydrogeology Journal 23, 961–969. https://doi.org/10.1007/s10040-015-1246-1
50. Ludwing, F., Moench, M., 2009. The impacts of climate change on water, in: Ludwig, F., Kabat, P., Schaik, H.V., Van der Valk, M. (Eds.), Climate Change Adaptation in the Water Sector. Earthscan Publishing, London, pp. 35–50.
51. Manski, C.F., 1993. Identification of Endogenous Social Effects: The Reflection Problem. The Review of Economic Studies 60, 531. https://doi.org/10.2307/2298123
52. MapBiomas, 2020. Coleção 5 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil [WWW Document]. URL https://mapbiomas.org/ (accessed 9.1.20).
53. Margat, J., Gun, J. van der, 2013. Groundwater around the World: a geographic synopsis, 1st ed. CRC Press, New York, NY.
54. Mekonnen, D., Siddiqi, A., Ringler, C., 2016. Drivers of groundwater use and technical efficiency of groundwater, canal water, and conjunctive use in Pakistan’s Indus Basin Irrigation System. International Journal of Water Resources Development 32, 459–476. https://doi.org/10.1080/07900627.2015.1133402
55. Morales, D., Gori-Maia, A.G., Garcia, J., 2022. Spatial diffusion of efficient irrigation systems: a study of São Paulo, Brazil*. Australian Journal of Agricultural and Resource Economics 66, 690–712. https://doi.org/10.1111/1467-8489.12483
56. NASA/JPL-Caltech, 2020. Map of Groundwater Storage Trends for Earth’s 37 Largest Aquifers [WWW Document]. Jet Propulsion Laboratory California Institute of Technology.
57. Neary, D.G., Ice, G.G., Jackson, C.R., 2009. Linkages between forest soils and water quality and quantity. Forest Ecology and Management 258, 2269–2281. https://doi.org/10.1016/j.foreco.2009.05.027
58. Ni, X., Parajuli, P.B., Ouyang, Y., 2020. Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale. Water Resources Management 34, 1553–1566. https://doi.org/10.1007/s11269-020-02526-3
59. Ostrom, E., 2012. The Challenge of Crafting Rules to Change Open Access Resources into Managed Resources, in: SSRN Electronic Journal. Workshop in Political Theory and Policy Analysis, Bloomington, p. 29. https://doi.org/10.2139/ssrn.1936109
60. Paul, M.J., 2006. Impact of land-use patterns on distributed groundwater recharge and discharge - A case study of western Jilin, China. Chinese Geographical Science 16, 229–235. https://doi.org/10.1007/s11769-006-0229-5
61. Richards, P., 2018. It’s not just where you farm; it’s whether your neighbor does too. How agglomeration economies are shaping new agricultural landscapes. Journal of Economic Geography 18, 87–110. https://doi.org/10.1093/jeg/lbx009
62. Sampson, G.S., Perry, E.D., 2019. Peer effects in the diffusion of water-saving agricultural technologies. Agricultural Economics (United Kingdom) 50, 693–706. https://doi.org/10.1111/agec.12518
63. Sampson, G.S., Perry, E.D., 2018. The Role of Peer Effects in Natural Resource Appropriation – The Case of Groundwater. American Journal of Agricultural Economics 101, 154–171. https://doi.org/10.1093/ajae/aay090
64. Scibek, J., Allen, D.M., Cannon, A.J., Whitfield, P.H., 2007. Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology 333, 165–181. https://doi.org/10.1016/j.jhydrol.2006.08.005
65. Singh, S., Park, J., 2018. Drivers of change in groundwater resources: a case study of the Indian Punjab. Food Security 10, 965–979. https://doi.org/10.1007/s12571-018-0823-2
66. SMA, 2012. As águas subterrâneas do estado de São Paulo, Cadernos de Educação Ambiental. Governo do Estado de São Paulo - Secretaria do Meio Ambiente (SMA).
67. Treidel, H., Martin-Boordes, J., Gurdak, J., 2012. Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations, Taylor & Francis Publishing.
68. Tsusaka, T.W., Kajisa, K., Pede, V.O., Aoyagi, K., 2015. Neighborhood effects and social behavior: The case of irrigated and rainfed farmers in Bohol, the Philippines. Journal of Economic Behavior and Organization 118, 227–246. https://doi.org/10.1016/j.jebo.2015.04.022
69. Villar, P.C., Villar, P.C., 2016. Groundwater and the Right to Water in a Context of Crisis. Ambiente & Sociedade 19, 85–102. https://doi.org/10.1590/1809-4422asoc150126r1v1912016
70. Wada, Y., Van Beek, L.P.H., Bierkens, M.F.P., 2012. Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research 48. https://doi.org/10.1029/2011WR010562
71. Wada, Y., Van Beek, L.P.H., Van Kempen, C.M., Reckman, J.W.T.M., Vasak, S., Bierkens, M.F.P., 2010. Global depletion of groundwater resources. Geophysical Research Letters 37. https://doi.org/10.1029/2010GL044571
72. Warziniack, T., Sham, C.H., Morgan, R., Feferholtz, Y., 2017. Effect of Forest Cover on Water Treatment Costs. Water Economics and Policy 3, 1750006. https://doi.org/10.1142/S2382624X17500060
73. Wu, W.-Y., Lo, M.-H., Wada, Y., Famiglietti, J.S., Reager, J.T., Yeh, P.J.-F., Ducharne, A., Yang, Z.-L., 2020. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat Commun 11, 3710. https://doi.org/10.1038/s41467-020-17581-y
74. Zhang, H., Hiscock, K.M., 2010. Modelling the impact of forest cover on groundwater resources: A case study of the Sherwood Sandstone aquifer in the East Midlands, UK. Journal of Hydrology 392, 136–149. https://doi.org/10.1016/j.jhydrol.2010.08.002
75. Zhang, Y.K., Schilling, K.E., 2006. Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A Field observation and analysis. Journal of Hydrology 319, 328–338. https://doi.org/10.1016/j.jhydrol.2005.06.044
Licencia
Derechos de autor 2024 Revista Desarrollo y Sociedad

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.