Revista Desarrollo y Sociedad logo

Desarro. soc. | eISSN 1900-7760 | ISSN 0120-3584

Análisis de eficiencia en educación: una aplicación del método StoNED

No. 92 (2022-10-01)
  • Alexander Arévalo S.
  • Víctor Giménez G.
  • Diego Prior J.

Resumen

En Colombia se han implementado métodos para medir la eficacia de las instituciones de educación media; por ello en este artículo se busca establecer la eficiencia de estas instituciones, utilizando una metodología innovadora conocida como análisis envolvente de datos estocástico no paramétrico (StoNED) haciendo una medición orientada al output. Se plantea una visualización de la relación entre la eficiencia y la gestión de las secretarías de educación por departamento. Se toman como unidades de decisión las instituciones, por medio de los resultados estudiantiles de las pruebas Saber 11; teniendo en cuenta dos niveles de agregación, por institución y por departamentos. Se encuentra una ligera diferencia en la proporción de instituciones que presentan una eficiencia técnica con respecto a las que no la presentan. Más aún, se identifica que la mayoría de las instituciones que no evidencian eficiencia técnica son aquellas de naturaleza oficial, así como las ubicadas en zona rural.

Palabras clave: modelo económico, optimización, productividad, política gubernamental, Colombia

Referencias

Afsharian, M. (2017). Metafrontier efficiency analysis with convex and non-convex metatechnologies by stochastic nonparametric envelopment of data. Economics Letters, 160(1), 1-3.

Agasisti, T. (2011). How competition affects schools’ performances: does specification matter?Economics Letters, 110(3), 259-261.

Agasisti, T. (2014). The efficiency of public spending on education: an empirical comparison of EU countries. European Journal of Education, 49(4), 543-557.

Agasisti, T., & Dal Bianco, A. (2006). Data envelopment analysis to the Italian university system: theoretical issues and policy implications. International Journal of Business Performance Management, 8(4), 344-367.

Agasisti, T., & Pérez-Esparrells, C. (2010). Comparing efficiency in a cross-country perspective: the case of Italian and Spanish state universities. Higher Education, 59(1), 85-103.

Agasisti, T., Egorov, A., Zinchenko, D., & Leshukov, O. (2020). Efficiency of regional higher education systems and regional economic short-run growth: empirical evidence from Russia. Industry and Innovation, 28(4), 507-534.

Aigner, D., Lovell, C., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21-37.

Álvarez, N. L., Callejas, Z., Griol, D., & Benejam, M. D. (2017). La deserción estudiantil en educación superior: SOS en carreras de ingeniería informática. Congresos CLABES. https://revistas.utp.ac.pa/index.php/clabes/article/view/1674

Andor, M., & Hesse, F. (2014). The StoNED age: the departure into a new era of efficiency analysis? A Monte Carlo comparison of StoNED and the “oldies” (SFA and DEA). Journal of Productivity Analysis, 41(1), 85-109.

Andrejevi´c-Pani´c, A., & Lozanov-Crvenkovi´c, Z. (2019). Analysis of higher education indicators coherency in central and eastern Europe. Business Systems Research Journal, 10(2), 6-17.

Ayala, J., Marrugo, S., & Saray, B. (2011). Antecedentes familiares y rendimiento académico en los colegios oficiales de Cartagena. Economía y Región, 5(2), 43-85.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.

Barrow, M. H. (1991). Measuring local education authority performance: a frontier approach. Economics of Education Review, 10(1), 19-27.Baskaran, A. (2017). UNESCO science report: towards 2030. Institutions and Economies, 8(1), 125-127.

Bates, J. M. (1997). Measuring predetermined socioeconomic “inputs” when assessing the efficiency of educational outputs. Applied Economics, 29(1), 85-93.

Beasley, J. E. (1995). Determining teaching and research efficiencies. Journal of the Operational Research Society, 46(4), 441-452.

Becerril-Torres, O. U., Álvarez-Ayuso, I. C., & Nava-Rogel, R. M. (2012). Frontera tecnológica y eficiencia técnica de la educación superior en México. Revista Mexicana de Investigación Educativa, 17(54), 793-816.

Bessent, A., & Bessent, W. (1980). Determining the comparative efficiency of schools through data envelopment analysis. Educational Administration Quarterly, 16(2), 57-75.

Brzezicki, Ł., Pietrzak, P., & Cieciora, M. (2020). The total efficiency of teaching activity of polish higher education institutions. Foundations of Management, 12(1), 19-30.

Cabrera, A. F., Nora, A., & Castaneda, M. B. (1993). Structural equations modeling test of an integrated model of student retention. Journal of Higher Education, 64(2), 123-139.

Caiazza, S., Pozzolo, A. F., & Trovato, G. (2016). Bank efficiency measures, M&A decision and heterogeneity. Journal of Productivity Analysis, 46(1), 25-41.

Canales, A., & De los Ríos, D. (2007). Factores explicativos de la deserción universitaria. Calidad en la Educación, 26(1), 173-201.

Cárcamo, C., & Mola, J. (2012). Diferencias por sexo en el desempeño académico en Colombia: un análisis regional. Economía y Región, 6(1), 133-169.

Castro, G., Giménez, G., & Pérez, D. (2017). Educational inequalities in Latin America, 2012 PISA: causes of differences in school performance between public and private schools. Revista de Educación, 376(1), 33-61.

Castro, G., Giménez, G., & Pérez, D. (2018). Estimación de los factores condicionantes de la adquisición de competencias académicas en América Latina en presencia de endogeneidad. Revista CEPAL, 124(1), 35-59.

Chakraborty, K., & Harper, R. K. (2017). Measuring the impact of socio-economic factors on school efficiency in Australia. Atlantic Economic Journal, 45(2), 163-179.

Chaovanapoonphol, Y., & Somyana, W. (2018). Production efficiency of maize farmers under contract farming in Laos PDR. Kasetsart Journal of Social Sciences, 41(1), 104-109.

Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2(6), 429-444.

Charnes, A., Cooper, W., & Rhodes, E. (1981). Evaluating program and managerial efficiency: an application of data envelopment analysis to program follows through. Management Science, 27(6), 668-697.

Charnes, A., Cooper, W., Lewin, A. Y., & Seiford, L. M. (1997). Data envelopment analysis theory, methodology and applications. Journal of the Operational Research Society, 48(3), 332-333.

Cheng, X., Bjørndal, E., & Bjørndal, M. (2014). Cost efficiency analysis based on the DEA and StoNED models: case of Norwegian electricity distribution companies. 11th International Conference on the European Energy Market (EEM14), 1-6.

Cooper, W. W., Seiford, L. M., & Tone, K. (2006). Introduction to data envelopment analysis and its uses: with DEA-solver software and references. Springer Science+Business Media.

Cordero, J. M., Prior, D., & Simancas, R. (2016). A comparison of public and private schools in Spain using robust nonparametric frontier methods. Central European Journal of Operations Research, 24(3), 659-680.

Cordero, J. M., Santín, D., & Simancas, R. (2017). Assessing European primary school performance through a conditional nonparametric model. Journal of the Operational Research Society, 68(4), 364-376.

Crespo-Cebada, E., Pedraja-Chaparro, F., & Santín, D. (2014). Does school ownership matter? An unbiased efficiency comparison for regions of Spain. Journal of Productivity Analysis, 41(1), 153-172.

Cubbin, J., & Zamani, H. (1996). A comparison of performance indicators for training and enterprise councils in the UK. Annals of Public and Cooperative Economics, 67(4), 603-632.

Dai, X., & Kuosmanen, T. (2014). Best-practice benchmarking using clustering methods: application to energy regulation. Omega, 42(1), 179-188.

De Witte, K., & López-Torres, L. (2015). Efficiency in education: a review of literature and a way forward. Journal of the Operational Research Society, 68(4), 339-363.

De Witte, K., & Rogge, N. (2011). Accounting for exogenous influences in performance evaluations of teachers. Economics of Education Review, 30(4), 641-653.

Departamento Administrativo Nacional de Estadística. (s.f.). Archivo Nacional de Datos. http://microdatos.dane.gov.co/index.php/catalog/MICRODATOS/about_collection/25/2

Deller, S. C., & Rudnicki, E. R. (1993) Production efficiency in elementary education: the case of Maine public schools. Economics of Education Review, 12(1), 45-57.

Dong, Y., Hamilton, R., & Tippett, M. (2014). Cost efficiency of the Chinese banking sector: a comparison of stochastic frontier analysis and data envelopment analysis. Economic Modelling, 36, 298-308.

Du Plessis, A. (2020). The emergence of decentralized centralism in the South African education governance system. Journal of Southern African Studies, 46(1), 165-183.

Eskelinen, J., & Kuosmanen, T. (2013). Intertemporal efficiency analysis of sales teams of a bank: stochastic semi-nonparametric approach. Journal of Banking & Finance, 37(12), 5163-5175.

Fan, Y., Li, Q., & Weersink, A. (1996). Semiparametric estimation of stochastic production frontier models. Journal of Business & Economic Statistics, 14(4), 460-468.

Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 84(1), 66-83.

Fertig, M., & Wright, R. E. (2005). School quality, educational attainment and aggregation bias. Economics Letters, 88(1), 109-114.

Gallegos, J. A., Campos, N. A., Canales, K. A., & González, E. N. (2018). Factores determinantes en la deserción universitaria: caso Facultad de Ciencias Económicas y Administrativas de la Universidad Católica de la Santísima Concepción (Chile). Formación Universitaria, 11(3), 11-18.

Ganley, J. A., & Cubbin, J. S. (1992). Public Sector Efficiency Measurement: Applications of Data Envelopment Analysis. Elsevier.

García-Robelo, O., Cáceres-Mesa, M. L., Veytia-Bucheli, M. G., Cisneros-Herrera, J., & León-González, J. L. (2020). Uso de un objeto virtual del aprendizaje para desarrollar competencias de investigación en educación superior. MediSur, 18(2), 154-160.

Giménez, V., Prior, D., & Thieme, C. (2007). Technical efficiency, managerial efficiency and objective-setting in the educational system: an international comparison. The Journal of the Operational Research Society, 58(8), 996-1007.

Giménez, V., Thieme, C., Prior, D., & Tortosa-Ausina, E. (2017). An international comparison of educational systems: a temporal analysis in presence of bad outputs. Journal of Productivity Analysis, 47(1), 83-101.

Giménez, V., Thieme, C., Prior, D., & Tortosa-Ausina, E. (2019). Comparing the performance of national educational systems: inequality versus achievement?Social Indicators Research, 141(2), 581-609.

Gómez-Silva, C. A. (2016). Schools’ classification according ICFES Saber 11 tests: an analysis using marginal models (MM). Sociedad y Economía, 30, 69-89.

Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the methodological framework of composite indices: a review of the Issues of weighting, aggregation, and aboutness. Social Indicators Research, 141(61), 1-34.

Greene, W. H. (2008). The econometric approach to efficiency analysis. The Measurement of Productive Efficiency and Productivity Growth, 1(1), 92-250.

Grosskopf, S., Hayes, K., & Taylor, L. L. (2014). Efficiency in education: research and implications. Applied Economic Perspectives and Policy, 36(2), 175-210.

Haelermans, C., & Ruggiero, J. (2017). Non-parametric estimation of the cost of adequacy in education: the case of Dutch schools. Journal of the Operational Research Society, 68(4), 390-398.

Haksever, C., & Muragishi, Y. (1998). Measuring value in MBA programs. Education Economics, 6, 11-26.

Hanushek, E. A. (1979). Conceptual and empirical issues in the estimation of educational production functions. Journal of Human Resources, 14(3), 351-388.

Hanushek, E. A. (1997). Assessing the effects of school resources on student performance: an update. Educational Evaluation and Policy Analysis, 19(2), 141-164.

Hanushek, E. A. (2002). Publicly provided education. Handbook of Public Economics, 4(2), 2045-2141.

Hanushek, E. A., & Luque, J. A. (2003). Efficiency and equity in schools around the world. Economics of Education Review, 22(5), 481-502.

Haug, A. A., & Blackburn, V. C. (2017). Government secondary school finances in New South Wales: accounting for students’ prior achievements in a two-stage DEA at the school level. Journal of Productivity Analysis, 48(1), 69-83.

Herrero, E. T., Cervero, A., Esteban, M., & Bernardo, A. (2018). ¿Por qué abandonan los alumnos universitarios? Variables de influencia en el planteamiento y consolidación del abandono. Educación XXI, 21(2), 131-154.

Hofflinger, A., & Von-Hippel, P. T. (2020). Does achievement rise fastest with school choice, school resources, or family resources? Chile from 2002 to 2013. Sociology of Education, 93(2), 132-152.

Ibáñez-Martín, M. M., Morresi, S. S., & Delbianco, F. (2017). Una medición de la eficiencia interna en una universidad argentina usando el método de fronteras estocásticas. Revista de la Educación Superior, 46(183), 47-62.

Instituto Colombiano para el Fomento de la Educación Superior. (21 de septiembre del 2022). Base de datos Saber 11. https://datos.gov.co/browse?category=Educación&q=ICFES

Iregui, A. M., Melo, L., & Ramos, J. (2007). Análisis de eficiencia de la educación en Colombia. Revista de Economía del Rosario, 10(1), 21-41.

Johnes, G., & Virmani, S. (2019). The efficiency of private and public schools in urban and rural areas: moving beyond the development goals. International Transactions in Operational Research, 27(4), 1869-1885.

Johnes, J. (2014). Efficiency and mergers in English higher education 1996/7 to 2008/9: parametric and non‐parametric estimation of the multi‐input multi‐output distance function. The Manchester School, 82(4), 465-487.

Johnson, A. L., & Kuosmanen, T. (2011). One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method. Journal of Productivity Analysis, 36(2), 219-230.

Johnson, A. L., & Ruggiero, J. (2014). Nonparametric measurement of productivity and efficiency in education. Annals of Operations Research, 221(1), 197-210.

King, K. (2019). Education, digital literacy and democracy: the case of Britain’s proposed “exit” from the European Union (Brexit). Asia Pacific Education Review, 20(2), 285-294.

Koçak, D., Türe, H., & Atan, M. (2019). Efficiency measurement with network DEA: an application to sustainable development goals 4. International Journal of Assessment Tools in Education, 6(3), 415-435.

Kovernuk, N. (2016). Efficiency financial resources in vocational education. Baltic Journal of Economic Studies, 2(4), 53-58.

Kumar, A., & Thakur, R. R. (2019). Objectivity in performance ranking of higher education institutions using dynamic data envelopment analysis. International Journal of Productivity and Performance Management, 68(4), 774-796.

Kuosmanen, T. (2012). Stochastic semi-nonparametric frontier estimation of electricity distribution networks: application of the StoNED method in the Finnish regulatory model. Energy Economics, 34(6), 2189-2199.

Kuosmanen, T., & Johnson, A. L. (2010). Data envelopment analysis as nonparametric least-squares regression. Operations Research, 58(1), 149-160.

Kuosmanen, T., & Johnson, A. L. (2017). Modeling joint production of multiple outputs in StoNED: directional distance function approach. European Journal of Operational Research, 262(2), 792-801.

Kuosmanen, T., & Kortelainen, M. (2012). Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints. Journal of Productivity Analysis, 38(1), 11-28.

Kuosmanen, T., & Kuosmanen, N. (2009). Role of benchmark technology in sustainable value analysis: an application to finish dairy farms. Agricultural and Food Science, 18(1), 302-316.

Kuosmanen, T., Johnson, A., & Saastamoinen, A. (2015). Stochastic nonparametric approach to efficiency analysis: a unified framework. Data Envelopment Analysis. International Series in Operations Research & Management Science, 221(1), 191-244.

Kuosmanen, T., Saastamoinen, A., & Sipiläinen, T. (2013). What is the best practice for benchmark regulation of electricity distribution?Comparison of DEA, SFA and StoNED methods. Energy Policy, 61(1), 740-750.

Li, H. Z., Kopsakangas-Savolainen, M., Xiao, X. Z., Tian, Z. Z., Yang, X. Y., & Wang, J. L. (2016). Cost efficiency of electric grid utilities in China: a comparison of estimates from SFA-MLE, SFA-Bayes and StoNED-CNLS. Energy Economics, 55(1), 272-283.

Liu, F., & Xu, H. (2017). Effects of educational efficiency on national competitiveness based on cross-national data. Education Sciences, 7(4), 81-92.

López-Torres, L., & Prior, D. (2016). Centralized allocation of human resources. An application to public schools. Computers & Operations Research, 73, 104-114.

Lotero, R., & Castellanos, P. (2008). La eficiencia económica: una aproximación teórica. Cuadernos Latinoamericanos de Administración, 4(7), 19-28.

Louca, C. N., & Demosthenous, A. (2015). Education and sustainable economic growth: a theoretical approach of measuring efficiency in education. International Journal of Sustainable Agricultural Management and Informatics, 1(3), 235-246.

Lovell, C. K. (2003). The decomposition of Malmquist productivity indexes. Journal of Productivity Analysis, 20(1), 437-458.

Lovell, C. K., Grosskopf, S., Ley, E., Pastor, J. T., Prior, D., & Eeckaut, P. V. (1994). Linear programming approaches to the measurement and analysis of productive efficiency. Top, 2(2), 175-248.

Mancebón, M., & Muñiz, M. A. (2008). Private versus public high schools in Spain: disentangling managerial and program efficiencies. The Journal of the Operational Research Society, 59(7), 892-901.

Mancebón, M. J., Calero, J., Choi, Á., & Ximénez-de-Embún, D. P. (2012). The efficiency of public and publicly subsidized high schools in Spain: evidence from PISA-2006. Journal of the Operational Research Society, 63(11), 1516-1533.

Manski, C. F. (2000). Economic analysis of social interactions. Journal of Economic Perspectives, 14(3), 115-136.

Mazurek, J., & Mielcová, E. (2019). On the relationship between selected-socio-economic indicators and student performances in the PISA 2015 study. Economy and Management, 22(2), 22-39.

Mekaroonreung, M., & Johnson, A. L. (2012). Estimating the shadow prices of SO2 and NOx for US coal power plants: a convex nonparametric least squares approach. Energy Economics, 34(3), 723-732.

Melo-Becerra, L. A., & Espinosa-Rodríguez, N. J. (2005). Ineficiencia en la distribución de energía eléctrica: una aplicación de las funciones de distancia estocástica. Revista Ensayos sobre Política Económica, 23(49), 88-132.

Melo-Becerra, L. A., Ramos-Forero, J. E., & Hernández-Santamaría, P. O. (2017). La educación superior en Colombia: situación actual y análisis de eficiencia. Revista Desarrollo y Sociedad, 78, 59-111.

Ministerio de Educación Nacional. (2014). Sistema nacional de indicadores educativos para los niveles de preescolar, básica y media en Colombia. https://www.mineducacion.gov.co/1621/articles-329021_archivo_pdf_indicadores_educativos_enero_2014.pdf

Miranda, J. C., & Araya, L. (2003). Eficiencia económica en las escuelas del MECE/rural desde la perspectiva del análisis envolvente de datos (DEA). Estudios Pedagógicos, 29, 27-39

Moncayo-Martínez, L. A., Ramírez-Nafarrate, A., & Hernández-Balderrama, M. G. (2020). Evaluation of public HEI on teaching, research, and knowledge dissemination by Data Envelopment Analysis. Socio-Economic Planning Sciences, 69(1), 100-718.

Morales, J. C. (2016). El informe Coleman, 50 años después. Revista de Sociología de la Educación-RASE, 9(1), 9-21.

Murillo-Melchor, C. (1999). An analysis of technical efficiency and productivity changes in Spanish airports using the Malmquist index. International Journal of Transport Economics, 26(2), 271-292.

Nguyen, T. T., Prior, D., & Van Hemmen, S. (2020). Stochastic semi-nonparametric frontier approach for tax administration efficiency measure: evidence from a cross-country study. Economic Analysis and Policy, 66(1), 137-153.

Nix, A. N., Jones, T. B., Brower, R. L., & Hu, S. (2020). Equality, efficiency, and developmental education reform: the impact of SB 1720 on the mission of the Florida college system. Community College Review, 48(1), 55-76.

Organización para la Cooperación y el Desarrollo Económicos (OCDE). (2016). Results (Volume II): Policies and Practices for Successful Schools. OCDE Publishing.

Organización para la Cooperación y el Desarrollo Económicos (OCDE) & Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (Unesco). (2016). Education in Thailand: An OECD-UNESCO perspective. OCDE, Unesco.

Oh, D. (2010). A global Malmquist-Luenberger productivity index. Journal of Productivity Analysis, 34(164), 183-197.

Padilla, A., Cachanosky, N., & Beck, J. (2020). Immigration and economic freedom: does education matter?The Journal of Private Enterprise, 35(1), 29-57.

Perelman, S., & Santín, D. (2011). Measuring educational efficiency at student level with parametric stochastic distance functions: an application to Spanish PISA results. Education Economics, 19(1), 29-49.

Peretto, C. (2016). Métodos para medir y evaluar la eficiencia de unidades productivas. Revista de la Escuela de Perfeccionamiento en Investigación Operativa, 24(39), 5-25.

Podinovski, V. V., Ismail, I., Bouzdine-Chameeva, T., & Zhang, W. (2014). Combining the assumptions of variable and constant returns to scale in the efficiency evaluation of secondary schools. European Journal of Operational Research, 239(2), 504-513.

Portela, M. C. A., & Thanassoulis, E. (2001). Decomposing school and school-type efficiency. European Journal of Operational Research, 132(2), 357-373.

Portela, M. C., Camanho, A. S., & Keshvari, A. (2013). Assessing the evolution of school performance and value-added: trends over four years. Journal of Productivity Analysis, 39(1), 1-14.

Prior, D. (1992). Los modelos de frontera en la evaluación de la productividad. Esic Market, 78, 113-131.

Ray, S. C., Kumbhakar, S. C., & Dua, P. (2015). Benchmarking for performance evaluation: a production frontier approach. Springer.

Rodríguez-Murillo, I. (2014). Eficiencia de la educación superior en Colombia: un análisis mediante fronteras. Revista CIFE: Lecturas de Economía Social, 16(24), 163-194.

Rymarzak, M., & Marmot, A. (2020). Higher education estate data accountability: the contrasting experience of UK and Poland. Higher Education Policy, 33(1), 179-194.

Sagarra, M., Mar-Molinero, C., & Agasisti, T. (2017). Exploring the efficiency of Mexican universities: integrating data envelopment analysis and multidimensional scaling. Omega, 67(1), 123-133.

Salas-Velasco, M. (2020). Does greater school resource allocation improve efficiency in education production? Performance assessment of Spanish public sector-funded schools. International Journal of Educational Management, 34(5), 903-915.

Salinas, P., & Solé-Ollé, A. (2018). Partial fiscal decentralization reforms and educational outcomes: a difference-in-differences analysis for Spain. Journal of Urban Economics, 107, 31-46.

Sánchez, A. (2011). Etnia y desempeño académico en Colombia, documentos de trabajo sobre economía regional en Cartagena, Colombia. Banco de la República, Centro de Estudios Económicos Regionales.

Schaefer, J., & Clermont, M. (2018). Stochastic non-smooth envelopment of data for multi-dimensional output. Journal of Productivity Analysis, 50(3), 139-154.

Sengupta, J. K. (1987). Production frontier estimation to measure efficiency: a critical evaluation in light of data envelopment analysis. Managerial and Decision Economics, 8(2), 93-99.

Sengupta, J. K., & Sfeir, R. E. (1986). Production frontier estimates of scale in public schools in California. Economics of Education Review, 5(3), 297-307.

Sengupta, J. K., & Sfeir, R. E. (1988). Efficiency measurement by data envelopment analysis with econometric applications. Applied Economics, 20(3), 285-293.

Sexton, T. R., Comunale, C. L., & Gara, S. C. (2012). Efficiency-based funding for public four-year colleges and universities. Education Finance and Policy, 7(3), 331-359.

Shen, X., & Lin, B. (2017). The shadow prices and demand elasticities of agricultural water in China: a StoNED-based analysis. Resources, Conservation and Recycling, 127(1), 21-28.

Silander, C., & Stigmar, M. (2019). Individual growth or institutional development? Ideological perspectives on motives behind Swedish higher education teacher training. Higher Education, 77(2), 265-281.

Soria-Barreto, K., & Zúñiga-Jara, S. (2014). Aspectos determinantes del éxito académico de estudiantes universitarios. Formación Universitaria, 7(5), 41-50.

Sosa, E. R. C., Barrientos, L. G., Castro, P. E. G., & García, J. H. (2010). Academic performance, school desertion and emotional paradigm in university students. Contemporary Issues in Education Research, 3(7), 25-36.

Sulis, I., Giambona, F., & Porcu, M. (2020). Adjusted indicators of quality and equity for monitoring the education systems over time. Insights on EU15 countries from PISA surveys. Socio-Economic Planning Sciences, 69(1), 100-718.

Teddlie, C., & Reynolds, D. (2001). Countering the critics: responses to recent criticisms of school effectiveness research. School Effectiveness and School Improvement, 12(1), 41-82.

Teremetskyi, V., Grynko, P., & Karmaza, O. (2017). Conceptual principles for increasing the efficiency of legislative regulation of the educational process in Ukraine. Science & Education, 26(6), 174-80.

Thanassoulis, E., & Portela, M. C. A. (2002). School outcomes: sharing the responsibility between pupil and school. Education Economics, 10(2), 183-207.

Thanassoulis, E., Kortelainen, M., Johnes, G., & Johnes, J. (2011). Costs and efficiency of higher education institutions in England: a DEA analysis. Journal of the Operational Research Society, 62(7), 1282-1297.

Thieme, C., Prior, D., & Tortosa-Ausina, E. (2013). A multilevel decomposition of school performance using robust nonparametric frontier techniques. Economics of Education Review, 32, 104-121.

Thieme, C., Prior, D., Giménez, V., & Tortosa-Ausina, E. (2011). Desempeño de los centros educativos: ¿un problema de recursos o capacidades organizativas?Hacienda Pública Española, 199(4), 81-118.

Tinto, V. (1975). Dropout from higher education: a theoretical synthesis of recent research. Review of Educational Research, 45(1), 89-125.

Tran, C. D. T., & Villano, R. A. (2018). Measuring efficiency of Vietnamese public colleges: an application of the DEA‐based dynamic network approach. International Transactions in Operational Research, 25(2), 683-703.

Tsai, S. L., Smith, M. L., & Hauser, R. M. (2017). Families, schools, and student achievement inequality: a multilevel MIMIC model approach. Sociology of Education, 90(1), 64-88.

Vélez, E. C., Gómez, S. G., Portilla, K. G., & Velásquez, J. V. (2006). Análisis de los factores asociados a la deserción y graduación estudiantil universitaria. Lecturas de Economía, 65(1), 9-36.

Visbal-Cadavid, D., Martínez-Gómez, M., & Guijarro, F. (2017). Assessing the efficiency of public universities through DEA. A case study. Sustainability, 9(8), 2-19.

Vries, W. D., León-Arenas, P., Romero-Muñoz, J. F., & Hernández-Saldaña, I. (2011). ¿Desertores o decepcionados? Distintas causas para abandonar los estudios universitarios. Revista de la Educación Superior, 40(160), 29-49.

Wang, D. D. (2019). Performance-based resource allocation for higher education institutions in China. Socio-Economic Planning Sciences, 65(1), 66-75.

Worthington, A. C. (2001). An empirical survey of frontier efficiency measurement techniques in education. Education Economics, 9(3), 245-268.

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.