Revista Desarrollo y Sociedad logo

Desarro. soc. | eISSN 1900-7760 | ISSN 0120-3584

Employment automation in Mexico and its effects on wage disparities

No. 100 (2025-07-17)
  • Owen Eli Ceballos Mina
    Universidad Autónoma Metropolitana Unidad Azcapotzalco
    ORCID iD: https://orcid.org/0000-0003-1931-8388
  • Humberto Guadarrama Gómez
    Universidad Autónoma Metropolitana Unidad Azcapotzalco
    ORCID iD: https://orcid.org/0009-0007-6209-5390

Abstract

New technologies are reshaping the global economy and labor markets. This article examines the effects of job automation risk on wage gaps in Mexico. Using data from the 2024 National Survey of Occupation and Employment, the Oaxaca-Blinder decomposition method is applied, correcting for sample selection bias, to estimate the effects of automation probability on wages. The findings reveal negative impacts of automation on wages, particularly affecting low-skilled workers. Due to regional human capital specialization, the Central and Southern regions face grater wage gaps, which can be explained by observable differences among workers. In contrast, the Northern, Northwestern, and Western regions face the strongest effects of wage discrimination due to automation probability. The study concludes that education plays a strategic role in reducing wage gaps caused by the risk of automation.

Keywords: automation, wage gap, human capital, technological change, mexico

References

Aboal, D., López, A., Maurizio, R., & Queraltó, P. (2021). Automatización y empleo en Uruguay. Desarrollo y Sociedad, (87), 33-72. https://doi.org/10.13043/dys.87.2

Acemoglu, D. (2002). Technical change, inequality, and the labor market. Journal of Economic Literature, 40(1), 7-72. https://doi.org/10.1257/0022051026976

Acemoglu, D. & Autor, D. (2012). Skills, tasks and technologies: implications for employment and earnings. En O. Ashenfelter & D. Card (Coords.). Handbook of Labor Economics (IV.B, pp. 1044-1166). Elsevier. https://doi.org/10.1016/S0169-7218(11)02410-5

Acemoglu, D., & Loebbing, J. (2022). Automation and polarization (Working Paper, No. 30528). NBER. https://doi.org/10.3386/w30528

Acemoglu, D., & Johnson, S. (2023). Poder y progreso. Nuestra lucha milenaria por la tecnología y la prosperidad. Crítica.

Acemoglu, D. & Restrepo, P. (2017). Robots and jobs: evidence from US labor markets (Working Paper, No. 23285). NBER. https://doi.org/10.3386/w23285

Acemoglu, D. & Restrepo, P. (2022). Tasks, automation, and the rise in U.S. wage inequality. Econometrica, 90(5), 1973-2016. https://doi.org/10.3982/ECTA19815

Alarcón, D., & McKinley, T. (2022). Mercados de trabajo y desigualdad del ingreso en México. Dos décadas de reestructuración económica. Papeles de Población, 4(18), 49-79.

Autor, D. (2019). Work of the past, work of the future (Working Paper, No. 25588). NBER. https://doi.org/10.3386/w25588

Autor, D. (2022). The labor market impacts of technological change: From unbridled enthusiasm to qualified optimism to vast uncertainty (Working Paper, No. 30074). NBER. https://doi.org/10.3386/w30074

Autor, D., Katz, L., & Krueger, A. (1998). Computing inequality: Have computers changed the labor market?. The Quarterly Journal of Economics, 113(4), 1169-1213. https://doi.org/10.1162/003355398555874

Autor, D., Levy, F., & Murnane, R. (2003). The skill content of recent technological change. An empirical exploration. The Quarterly Journal of Economics, 118(4), 1279-1333. https://doi.org/10.1162/003355303322552801

Banco de México —Banxico. (2018). La automatización regional en México desde una perspectiva regional. En Reporte sobre las economías regionales (pp. 18-21). Autor. http://bit.ly/403GQ1h

Bentaouet-Kattan, R., Macdonald, K., & Patrinos, H. A. (2021). The role of education in mitigating automation’s effect on wage inequality. Labour, 35(1), 79-104. https://doi.org/10.1111/labr.12187

Blinder, A. (1973). Wage discrimination. Reduced form and structural estimates. The Journal of Human Resources, 8(4), 436-455. https://doi.org/10.2307/144855

Brall, F., & Schmid, R. (2023). Automation, robots and wage inequality in Germany. A decomposition analysis. Labour, (37), 33-95. https://doi.org/10.1111/labr.12236

Brougham, D., & Haar, H. (2020). Technological disruption and employment. The influence on job insecurity and turnover intentions. A multi-country study. Technological Forecasting and Social Change, 161. https://doi.org/10.1016/j.techfore.2020.120276

Card, D., & DiNardo, J. E. (2002). Skill biased technological change and rising wage inequality: some problems and puzzles. Journal of Labor Economics, 20(4), 733-783. https://doi.org/10.1086/342055

Campos-Vázquez, R. M., Krozer, A., Ramírez, A. A., de la Torre, R., & Vélez, R. (2022). Percepciones de desigualdad y movilidad social en México. World Development, (151), 105778. https://doi.org/10.1016/j.worlddev.2021.105778

Cebreros, A., Heffner, A., Livas, R., & Puggioni, D. (2020). Tecnologías de automatización y empleo bajo riesgo. El caso de México (Working Paper, No. 2020-04). Banxico. https://bit.ly/3ZImTga

Dawid, H., &Neugart, M. (2023). Effects of technological change and automation on industry structure and (wage-)inequality: insights from a dynamic task-based model. Journal of Evolutionary Economics, (33), 35-63. https://doi.org/10.1007/s00191-022-00803-5

Espíndola, E., & Suárez, J. I. (2023). Automatización laboral y estratificación en América Latina. En R. Martínez (Coord.). Automatización e inclusión laboral en América Latina. Impactos potenciales, vulnerabilidades y propuestas de política (pp. 25-29). Cepal.

Ferreiro-Seoane, F. J., Mogo, C., Del Campo, & M. Ríos, A. (2023). Polarización y riesgo de automatización. Revista Empresa y Humanismo, 26(2), 33-68. https://doi.org/10.15581/015.XXVI.2.33-68

Frey, C. B., & Osborne, M. A. (2017). The future of employment. How susceptible are jobs to computarisation? Technological Forecasting and Social Change, (114), 254-280. http://dx.doi.org/10.1016/j.techfore.2016.08.019

Goldin, C., & Katz, L. F. (2008). The race between education and technology. Harvard University Press.

González-Pérez, G. (2022). Automatización y dinámica del mercado laboral en la industria automotriz en México. Economía Teoría y Práctica, 30(56), 67-104. http://dx.doi.org/10.24275/etypuam/ne/562022/Gonzalez

Goos, M., Manning, A., & Salomons, A. (2014). Explaining job polarization. Routine-biased technological change and offshoring. American Economic Review, 104(8), 2509-2526. https://doi.org/10.1257/aer.104.8.2509

Heckman, J. (1974). Shadow prices, market wages, and labor supply. Econometrica, 42(4), 679-694. https://doi.org/10.2307/1913937

Heckman, J. (1979). Sample bias as a specification error. Econometrica, 47(1), 153-162. https://doi.org/10.2307/1912352

Instituto Nacional de Estadística y Geografía —Inegi. (2024). Encuesta Nacional de Ocupación y Empleo. Tercer Trimestre [Base de datos]. Inegi. https://www.inegi.org.mx/programas/enoe/15ymas/#microdatos

Instituto Nacional de Estadística y Geografía —Inegi. (2019). Sistema Nacional de Clasificación de Ocupaciones, 2019, Sinco. Inegi. https://www.snieg.mx/Documentos/Normatividad/Vigente/SINCO_2019.pdf

Jann, B. (2008). The Blinder–Oaxaca decomposition for linear regression models. The Stata Journal, 8(4), 453-479. https://doi.org/10.1177/1536867X0800800401

Keynes, J. M. (1930). Economic possibilities for our grandchildren. Yale University Press.

Krueger, A. (1993). How computers have changed the wage structure. Evidence from microdata, 1984–1989. Quarterly Journal of Economics, (108), 33-60.

Maurizio, R., Fernández, A. L., & Catania, M. S. (2023). Automatización, ocupaciones y tareas. H-Industria, 32(17), 27-55. https://doi.org/10.56503/H-Industria/n.32(17)pp.27-55

McKinsey Global Institute (2017). Un futuro que funciona: automatización, empleo y productividad. Resumen ejecutivo. Autor. https://bit.ly/4edqIzL

Mihaylova, S., & Bratoeva-Manoleva, S. (2018). Structural changes and wage inequality in the Bulgarian economy. Eastern Journal of European Studies, 9(2), 205-227.

Milanovic, B. (2017). Desigualdad mundial. Un nuevo enfoque para la era de la globalización. Fondo de Cultura Económica.

Minian, I., & Martínez, A. (2018). El impacto de las nuevas tecnologías en el empleo en México. Problemas del desarrollo. Revista Latinoamericana de Economía, 195(49), 27-53. http://doi.org/10.22201/iiec.20078951e.2018.195.64001

Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic Review, 14(3), 693-709. https://doi.org/10.2307/2525981

Orozco, M.E., Espinosa, R. Fonseca, C., & Vélez, R. (2019). Informe de movilidad social en la Ciudad de México 2019. Centro de Estudios Espinosa Yglesias.

Piketty, T. (2014). El capital en el siglo XXI. Fondo de Cultura Económica.

Posso, C. M., & Medina, C. A. (2018). Cambio técnico y polarización en el mercado laboral. Evidencia para Colombia. El Trimestre Económico, 85(338), 365-410. https://doi.org/10.20430/ete.v85i338.349

Solow, R. M. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65-94. https://doi.org/10.2307/1884513

Tinbergen, J. (1974). Substitution of graduate labor by other. Kyklos, 27(2):217-226.

Varela, R. & Tavares, R. (2023). Cambio tecnológico y desigualdad de ingresos en México. Contaduría y Administración, 69(3), 247-270. https://doi.org/10.22201/fca.24488410e.2024.4704

Wang, X. (2020), Labor market polarization in Britain and Germany. A cross-national comparison using longitudinal household data. Labour Economics, (65). https://doi.org/10.1016/j.labeco.2020.101862

License

Copyright (c) 2025 Desarrollo y Sociedad

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.