Examining the influence of fiscal and monetary policies on firm market capitalization: A panel vector autoregressive (PVAR) analysis for Mexico
No. 96 (2024-02-29)Author(s)
-
Washington Quintero MontañoUniversidad de GuayaquilORCID iD: https://orcid.org/0000-0001-7412-5744
-
Abigail Rodríguez NavaUniversidad Autónoma MetropolitanaORCID iD: https://orcid.org/0000-0003-4267-7979
-
Liliam Itzel Pérez VázquezUniversidad Autónoma MetropolitanaORCID iD: https://orcid.org/0000-0003-4355-9835
-
Doménica Akira León VillafuerteUniversidad de Guayaquil
Abstract
Several studies have examined the relationship between monetary policy and the stock market. However, few have assessed the impact of fiscal management on this market. This paper examines the extent to which fiscal policy affects a firm’s stock market capitalization using the Panel Vector Autoregressive (PVAR) methodology. The study finds that the stock market capitalization in the CPI fully reflects the available information on the movements of variables related to monetary policy. However, total public indebtedness exerts a significant lagged effect on the stock market capitalization of Mexican firms. This finding indicates that the CPI does not fully reflect the available information on the movements of fiscal policy variables. A comprehensive analysis of fiscal policy measures can enhance stock market performance for investors and financial analysts.
References
Abrigo, M., & Love, I. (2016). Estimation of panel vector autoregression in Stata. The Stata Journal, 778-804. https://doi.org/10.1177/1536867X1601600314
Baker, M., & Wurgler, J. (2002). Market timing and capital structure. The Journal of Finance, 42(1), 1-32. https://doi.org/10.1111/1540-6261.00414
Bhargava, A. (2014). Firms’ fundamentals, macroeconomic variables and quarterly stock prices in the US. Journal of Econometrics, 183(2), 241-250. https://doi.org/10.1016/j.jeconom.2014.05.014
Barnhart, S., & Darrat, A. (1989). Federal deficits and money growth in the United States: a vector autoregression. Journal of Banking & Finance, 13(1), 137-149. https://doi.org/10.1016/0378-4266(89)90024-1
Beenstock, M., & Chan, K.-F. (1988). Economic forces in the London stock market. Oxford Bulletin Of Economics and Statistics, 50(1), 27-39. https://doi.org/10.1111/j.1468-0084.1988.mp50001002.x
Bermúdez, N., Bermúdez, E., & Saucedo, E. (2018). The relationship between oil prices, the stock market and the exchange rate: evidence from Mexico. North American Journal of Economics and Finance, 45, 266-275. https://doi.org/10.1016/j.najef.2018.03.006
Bernanke, B., & Kuttner, K. (2005). What explains the stock market’s reaction to Federal Reserve policy? The Journal of Finance, 40(3), 1221‐1257. https://doi.org/10.1111/j.1540-6261.2005.00760.x
Bernardo, C. J., Tatiana, A., & Securato, J. R. (2018). Macroeconomic and institutional factors, debt composition and capital structure of Latin American companies. Brazilian Business Review, 15(2), 152-174. http://dx.doi.org/10.15728/bbr.2018.15.2.4
Blanchard, O. (1981). Output, the stock market, and interest rates. The American Economic Review, 71(1), 132-143. https://bit.ly/3tAPYwZ
Bulmash, S., & Trivoli, G. (1991). Time-lagged interactions between stocks prices and selected economic variables. The Journal of Portfolio Management Summer, 17(4), 61-67. https://doi.org/10.3905/jpm.1991.409351
Cajas, J., Jácome, H., & Pérez, B. (2022). Mercado laboral y shocks petroleros: un análisis de cohorte y PVAR para Ecuador. Cuadernos de Economía, 41(86), 243-276. https://doi.org/10.15446/cuad.econ.v41n86.86027
Campbell, J., & Perron, P. (1991). Pitfalls and opportunities: what macroeconomists should. En O. Blanchard & S. Fischer (eds.), NBER Macroeconomics Annual 1991. Vol. 6 (pp. 141-220). The MIT Press.
Chen, N.-F. (1991). Financial investment opportunities and the macroeconomy. The Journal of Finance, 46(2), 529-554. https://doi.org/10.2307/2328835
Chen, N.-F., Roll, R., & Ross, S. (1986). Economic forces and the stock market. The Journal of Business, 59(3), 383-401.
Chen, X., Lin, S., & Reed, W. (2009). A Monte Carlo evaluation of the efficiency of the PCSE estimator. Applied Economics Letters, 17(1), 7-10.
Cheung, Y.-W., & Ng, L. (1998). International evidence on the stock market and aggregate economic activity. Journal of Empirical Finance, 5(3), 281-296. https://doi.org/10.1016/S0927-5398(97)00025-X
Chipeta, C., & Mbulu, D. (2013). Firm heterogeneity, macroeconomic conditions and capital structure adjustment speeds: evidence from the JSE. Investment Analysts Journal, 42(77), 69-80. https://doi.org/10.1080/10293523.2013.11082557
Croissant, Y., & Millo, G. (2019). Panel Data Econometrics with R. John Wiley & Sons Ltd.
Darrat, A. (1990). Stock returns, money, and fiscal deficits. Journal of Financial and Quantitative Analysis, 25(3), 387-398. https://doi.org/10.2307/2330703
Fama, E. (1970). Efficient capital markets: a review of theory and empirical work. The Journal of Finance, 25(2), 383-417.
Fama, E., & French, K. (2002). Testing trade-off and pecking order predictions about dividends and debt. The Review of Financial Studies, 15(1), 1-33. https://doi.org/10.1093/rfs/15.1.1
Fama, E., & MacBeth, J. (1973). Risk, return, and equilibrium: empirical tests. Journal of Political Economy, 81(3), 607-636.
Fama, E. (1981). Stock Returns, Real Activity, Inflation, and Money. American Economic Association, 71(4), 545-565. https://bit.ly/3Oop8zs
Fama, E., & French, K. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25(1), 23-49. https://doi.org/10.1016/0304-405X(89)90095-0
Fama, E., & Schwert, W. (1977). Asset returns and inflation. Journal of Financial Economics, 5(2), 115-146. https://doi.org/10.1016/0304-405X(77)90014-9
Fedorova, E., Musienko, S., & Afanasyev, D. (2020). Impact of the Russian stock market on economic growth. Finance: Theory and Practice, 24(3), 161-173. https://doi.org/10.26794/2587-5671-2020-24-3-161-173
Geske, R., & Roll, R. (1983). The fiscal and monetary linkage between stock returns and inflation. The Journal of Finance, 38(1), 1-33. https://doi.org/10.2307/2327635
Hodrick, R., Tat-Chee Ng, D., & Sengmueller, P. (1999). An international dynamic asset pricing model. International Tax and Public Finance, 6(4), 597-620. https://doi.org/10.1023/A:1008713724886
Hoshikawa, T., & Yoshimi, T. (2021). The effect of the Covid-19 pandemic on South Korea’s stock market and exchange rate. The Developing Economies, 59(2), 206-222. https://doi.org/10.1111/deve.12276
Kalam, K. (2020). The effects of macroeconomic variables on stock market returns: evidence from Malaysia’s stock market return performance. Journal of World Business, 55. https://bit.ly/3VOgYkQ
Keim, D., & Stambaugh, R. (1986). Predicting returns in the stock and bond markets. Journal of Financial Economics, 17(2), 357-390. https://doi.org/10.1016/0304-405X(86)90070-X
Lamont, O. (1998). Earnings and expected returns. The Journal of Finance, 53, 1563-1587. https://doi.org/10.1111/0022-1082.00065
Lee, L.-f., & Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 154(2), 165-185. https://doi.org/10.1016/j.jeconom.2009.08.001
Levy, A., & Hennessy, C. (2007). Why does capital structure choice vary with macroeconomic conditions? Journal of Monetary Economics, 54(6), 1545-1564. https://doi.org/10.1016/j.jmoneco.2006.04.005
Levy, N., & Bustamante, J. (2022). Flujos de capital y desarrollo financiero: una mirada desde países en desarrollo. Problemas del Desarrollo, 53(209), 159-188. https://doi.org/10.22201/iiec.20078951e.2022.209.69785
Levy-Orlik, N. (2012). Tasas de interés, demanda efectiva y crecimiento económico. Economía UNAM, 9(25), 74-93. https://bit.ly/3QpKBrr
Li, N., Richardson, S., & Tuna, İ. (2014). Macro to micro: country exposures, firm fundamentals and stock returns. Journal of Accounting and Economics, 58(1), 1-20. https://doi.org/10.1016/j.jacceco.2014.04.005
Magán-Ayuso, R. (2017). Relación entre la evolución de índices bursátiles y variables macroeconómicas. ¿Se ha alterado tras la introducción de medidas no convencionales de política monetaria? Universidad Pontificia de Madrid.
Martins, R., & Tiburcio, C. (2017). Theoretical study of relationship: macroeconomy and companies. Uniabeu, 10(25), 38-51. https://bit.ly/3QnBKGN
Mello da Silva, F., Coronel, D., & Mendes-Vieira, K. (2014). Causality and cointegration analysis between macroeconomic variables and the Bovespa. PLoS ONE, 2. https://doi.org/10.1371/journal.pone.0089765
Miller, M. (1977). Debt and taxes. The Journal of Finance, 32(2), 261-275. https://doi.org/10.2307/2326758
Modigliani, F., & Miller , M. (1963). Corporate income taxes and the cost of capital: a correction. The American Economic Review, 53, 433-443.
Modigliani, F., & Miller, M. (1958). The cost of capital, corporation finance and the theory of investment. The American Economic Review, 48(3), 261-297. https://bit.ly/3Gpi8h4
Mosso-Martínez, M., & López-Herrera, F. (2020). Causas económicas de morosidad en la cartera hipotecaria titulizada en México. Análisis Económico, 35(89), 215-238. https://www.scielo.org.mx/pdf/ane/v35n89/2448-6655-ane-35-89-215.pdf
Myers, S. (2001). Capital structure. Journal of Economic Perspectives, 15(2), 81-102.
Myers, S., & Majluf, N. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13(2), 187-221. https://doi.org/10.1016/0304-405X(84)90023-0
Oguzhan, O., & Nurtac, Y. (2016). Impacts of short-term interest rates on stock returns and exchange rates: empirical evidence from EAGLE countries. The Journal of International Trade & Economic Development, 228-255. https://doi.org/10.1080/09638199.2016.1232747
Pesaran, H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265-312. https://doi.org/10.1002/jae.951
Pesaran, H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics, 68(1), 79-113. https://doi.org/10.1016/0304-4076(94)01644-F
Pesaran, H., Shin, Y., & Smith, R. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94(446), 621-634. https://doi.org/10.1080/01621459.1999.10474156
Pesaran, M. (2015). Time Series and Panel Data Econometrics. Oxford University Press.
Priestley, R. (1996). The arbitrage pricing theory. Journal of Banking & Finance, 20(5), 869-890. https://doi.org/10.1016/0378-4266(95)00035-6
Schwert, W. (1989). Why does stock market volatility change over time? The Journal of Finance, 44(5), 1115-1153. https://doi.org/10.1111/j.1540-6261.1989.tb02647.x
Singhala, S., Sangita, C., & Chandra, P. (2019). Return and volatility linkages among international crude oil price, gold price, exchange rate and stock markets: evidence from Mexico. Resources Policy, 60, 255-261. https://doi.org/10.1016/j.resourpol.2019.01.004
Stoian, A., & Iorgulescu, F. (2020). Fiscal policy and stock market efficiency: an ARDL bounds testing approach. Economic Modelling, 90, 406-416. https://doi.org/10.1016/j.econmod.2019.12.023
Swamy, P. (1970). Efficient inference in a random coefficient regression model. Econometrica, 38(2), 311-323. https://econpapers.repec.org/article/ecmemetrp/v_3a38_3ay_3a1970_3ai_3a2_3ap_3a311-23.htm
Tobin, J. (1969). A general equilibrium approach to monetary theory. Journal of Money, Credit and Banking, 1(1), 15-29. https://doi.org/10.2307/1991374