Revista Desarrollo y Sociedad logo

Desarro. soc. | eISSN 1900-7760 | ISSN 0120-3584

Análisis de componentes principales no lineales para la construcción de un índice de estratificación socioeconómica para el Ecuador

No. 88 (2021-07-01)
  • Katherine Morales
  • Miguel Flores
  • Yasmín Salazar Méndez

Abstract

Socio-economic stratification classifies people or groups of people within a society. Although social stratification is a universal characteristic of human societies, the criteria considered to classify individuals is not unique and some methodological approaches are distinguished. In this article, we build an indicator of socioeconomic stratification for Ecuador through a Nonlinear Principal Components Analysis using data from the 2010 Census. This methodology allows the incorporation of numerical and categorical variables, and nonlinear relationships. The main results suggest that the households located in the urban area show better conditions and greater access to basic services. Also, education positively affects social and economic conditions of both individuals and the households. In light of these results, public policy should target education and public investment in the provision of basic services in rural areas.

Keywords: Statistical analysis, social class, social inequality, Ecuador

References

AcemogluD., NaiduS., Restrepo, P. and Robinson, J. (2015) Democracy, Redistribution, and inequality. In Handbook of Income Distribution, 2, 1885-1966.

Cortina, J. M. (1993). What is coefficient alpha?An examination of theory and applications. Journal of applied psychology, 78(1), 98.

Davison, A. C., Hinkley, D. V., & Schechtman, E. (1986). Efficient bootstrap simulation. Biometrika, 73(3), 555–566, https://doi.org/10.1093/biomet/73.3.555

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics, 7, 1-26.

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

Ferrari, P. A., & Manzi, G. (2010). Nonlinear principal component analysis as a tool for the evaluation of customer satisfaction. Quality technology & quantitative management, 7(2), 117-132.

Featherman, D., Hauser. R. (1975). Design for a Replicate Study of Social Mobility in the United States. In Social Indicator Models, edited by Kenneth C. Land and Seymour Spilerman. New York: Russell Sage.

Fujihara, S. (2020). Socio-Economic Standing and Social Status in Contemporary Japan: Scale Constructions and Their Applications, European Sociological Review, 36 (4), 548–561.

Gifi, A. (1990). Nonlinear multivariate analysis. Wiley.

Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. The prediction of personal adjustment. New York: Social Science Research Council.

Haug, M. (1977). Measurement in Social Stratification. Annual Review of Sociology, 3(1), 51-77.

Haer, J. (1957). Predictive Utility of Five Indices of Social Stratification. American Sociological Review, 22(5), 541-546.

Kamakura, W., & Mazzon, J. (2013). Socioeconomic status and consumption in an emerging economy. International Journal of Research in Marketing, 30(1):4-18.

Kerbo, H. (2017). Social Stratification. In The Wiley‐Blackwell Encyclopedia of Social Theory, B.S.Turner (Ed.). https://doi.org/10.1002/9781118430873.est0761

Krijnen, W. P. (2006). Convergence of the sequence of parameters generated by alternating least squares algorithms. Computational statistics & data analysis, 51(2), 481-489.

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2), 115-129.

Kruskal, J. B., & Shepard, R. N. (1974). A nonmetric variety of linear factor analysis. Psychometrika, 39(2), 123-157.

Kuroda, M., Mori, Y., Masaya, I., & Sakakihara, M. (2013). Alternating least squares in nonlinear principal components. Wiley Interdisciplinary Reviews: Computational Statistics, 5(6), 456-464.

Linting, M., Meulman, J. J., Groenen, P. J., & van der Koojj, A. J. (2007). Nonlinear principal components analysis: introduction and application. Psychological methods, 12(3), 336.

Linting, M., Meulman, J. J., Groenen, P. J., & Van der Kooij, A. J. (2007). Stability of nonlinear principal components analysis: An empirical study using the balanced bootstrap. Psychological methods, 12(3), 359.

Markus, M. T. (1994). Bootstrap confidence regions in nonlinear multivariate analysis, 28. DSWO Press, Leiden University.

McLeodJ.D., NonnemakerJ.M. (1999). Social Stratification and Inequality. In: AneshenselC.S., PhelanJ.C. (eds) Handbook of the Sociology of Mental Health. Springer, Boston, MA. https://doi.org/10.1007/0-387-36223-1_16

Meulman, J. J., Heiser, W. J. (1999). SPSS Categories 10.0. Chicago: SPSS incorporated.

Mori, Y., Kuroda, M., & Makino, N. (2016). Nonlinear principal component analysis and its applications. New York, USA: Springer.

Rodrigues, M. (2012) Estratificação social na teoria de Max Weber: Considerações em torno do tema. Revista Iluminart, 1(9).

Rodríguez, L.; Maza, O.; Macías, J.; Ortiz, D. (2020). Analysis of inequality via social stratification. Entreciencias: Diálogos en la Sociedad del Conocimiento, 8(22). https://doi.org/10.22201/enesl.20078064e.2020.2276859e22.76859

Shepard, R. N. (1966). Metric structures in ordinal data. Journal of Mathematical Psychology, 3(2), 287-315.

Silva, G. (1981). Critérios de Estratificação Social.Revista de Saúde Pública, 15, pages: 38–45.

Tang, Y. (2017). Social Class Index: A New Measurement for Gender Social Stratification. Sociology and Anthropology, 5, 388-398.

Taylor, E., StewartM., Hardner, J. (2007). Estimación de la importancia del turismo y la pesca en la economía de Galápagos. En Galápagos: migración, economía, cultura, conflicto y acuerdos, compilado por Pablo Ospina y Cecilia Falconí, 115-130. Quito: Corporación editora Nacional, Universidad Andina Simón Bolívar y Programa Naciones Unidas para el Desarrollo.

Wu, X. (2019), Inequality and Social Stratification in Postsocialist China, Annual Review of Sociology, 45 (1), 363-382.

Young, F. (1981) Quantitative analysis of qualitative data. Psychometrika, 46(4):357-388.

WrightEO (2005) Approaches to Class Analysis. Cambridge: Cambridge University Press.

Zhou, X; Wodtke, G. (2019). Income Stratification among Occupational Classes in the United States, Social Forces, 97(3), 945–972.

License