Colombia Internacional

Colomb. int. | eISSN 1900-6004 | ISSN 0121-5612

Data Science and Global Studies: Contributions and Methodological Challenges

No. 102 (2020-04-01)
  • Daniel Lemus-Delgado
    Tecnológico de Monterrey (México)
  • Ricardo Pérez Navarro
    Tecnológico de Monterrey (México)

Abstract

Objective/Context: Big Data is a novel and promising methodological approach to acquire and analyze information from an extensive range of scientific disciplines. Despite the fact that Big Data has wide dissemination and acceptance in different scientific disciplines, its use in the field of Global Studies is still incipient. Taking this into account, this paper discusses the methodological challenges and presumable contributions that Big Data offers to Global Studies. Methodology: The starting point for this paper is the critical analysis of the conceptual bases of Big Data and its relationships with Global Studies. So, this paper proposes the possible applications of Big Data in the Global Studies contrasting some key concept. In this way, the conceptual elements that define Data Science are examined and compared with the paradigmatic conceptions of Global Studies. On these conceptual fundaments, the article discusses links, limits and, scopes of Big Data and how it can contribute to Global Studies. Conclusions: This paper concludes that technological tools based on Big Data can enrich our understanding of global phenomena only if we position ourselves in a critical attitude that recognizes that the choice of data and its analysis are decisions embedded in historical and social contexts. In this way, as with any other methodological approach, Big Data is only a partial way to obtain and analyze information. Originality: The originality of this paper is to shed critical light on the scope and limits of Big Data, beyond a positivist vision of scientific knowledge. In other words, this article recognizes the biases behind the supposed neutral explanations regarding the use of techniques based on Big Data.

Keywords: Global studies, big data, scientific research, methodology

References

Appelbaum, Richard P. 2013. “Comments on Jan Nederveen Pieterse’s Essay, ‘What is Global Studies?’”. Globalizations 10 (4): 545-550. https://10.1080/14747731.2013.806727

Aradau, Claudia y TobíasBlanke. 2016. “Politics of Prediction: Security and the Time/Space of Governmentality in the Age of Big Data”. European Journal of Social Theory 20 (3): 373-391. https://doi.org/10.1177/1368431016667623

Araya, Agustín A. 2005. “Internet”. En Encyclopedia of Science, Technology, and Ethics, editado por CarlMitcham, 1048-1052. Detroit, MI: Macmillan Reference

Arteaga, Carlos, RobertoBermúdez y GuillermoCampos. 2004. Ciencias sociales e investigación social. Ciudad de México: Universidad Nacional Autónoma de México.

Attewell, Paul y DavidMonaghan. 2015. Data Mining for the Social Sciences: An Introduction. Oakland: University of California Press.

Barranco, Ricardo. 2012. “¿Qué es Big Data? Todos formamos parte de ese gran crecimiento de datos”. IBM. Consultado el 27 de enero de 2020. https://www.ibm.com/developerworks/ssa/local/im/que-es-big-data/index.html

Boyd, Danah y KateCrawford. 2012. “Critical Questions for Big Data”. Information, Communication & Society 15 (5): 662-679. https://doi.org/10.1080/1369118X.2012.678878

Campbell, Patricia J., AranMacKinnon y Christy R.Stevens. 2010. An Introduction to Global Studies. Malden: Wiley-Blackwell.

Catalán Fernández, Albert y M. CatanyEscandell. 1986. “Contra el mito de la neutralidad de la ciencia. El papel de la historia”. Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas 4 (2): 163-166.

Chitra, Kandan y BalakrishnanSubashini. 2013. “Data Mining Techniques and its Applications in Banking Sector”. International Journal of Emerging Technology and Advanced Engineering 3(8): 220-222.

Clare, Susan E. y Pamela L.Shaw. 2016. “Big Data” for Breast Cancer: Where to Look and what You Will Find”. NPJ Breast Cancer 2: 1-5. https://doi.org/10.1038/npjbcancer.2016.31

Cowls, Josh y RalphSchroeder. 2015. “Causation, Correlation, and Big Data in Social Science Research”. Policy & Internet 7 (4): 447-472. https://doi.org/10.1002/poi3.100

Cox, Michael y DavidEllsworth. 1997. “Application-Controlled Demand Paging for Out-of-Core Visualization”. https://www.nas.nasa.gov/assets/pdf/techreports/1997/nas-97-010.pdf

Crawford, Kate. 2013. “The Hidden Biases of Big Data”. Harvard Business Review 1: 2013. https://hbr.org/2013/04/the-hidden-biases-in-big-data

Darian-Smith, Eve y Philip C.McCarty. 2017. The Global Turn: Theories, Research Designs, and Methods for Global Studies. Berkeley, CA: University of California Press.

Davenport, Thomas H. y DhanurjayPatil. 2012. “Data Scientist: The Sexiest Job of the 21st Century”. Harvard Business Review 90 (10): 5-7.

Della Porta, Donatella y MichaelKeating. 2008. Introducción a Approaches and Methodologies in the Social Sciences, editado por Donatella dellaPorta y MichaelKeating, 1-15. Cambridge: Cambridge University Press.

Dourish, Paul y Edgar GómezCruz. 2018. “Datafication and Data Fiction: Narrating Data and Narrating with Data”. Big Data & Society 5 (2): 1-10. https://doi.org/10.1177/2053951718784083

Drucker, Peter F. 1993. Post-Capitalist Society. Oxford: Butterworth-Heinemann.

Everitt, Brian S. 2002. “Parsimony Principle”. En Cambridge Dictionary of Statistics, editado por Brian S.Everitt, 272. Cambridge: Cambridge University Press.

Few, Stephen. 2013. “Data Visualization for Human Perception”. En The Encyclopedia of Human-Computer Interaction, editado por ConstantineStephanidis, capítulo 35. Aarhus, Dinamarca: The Interaction Design Foundation.

Foster, Ian, RayidGhani, Ron S.Jarmin, FraukeKreuter y JuliaLane. 2016. Big Data and Social Science: A Practical Guide to Methods and Tools. Nueva York: Chapman & Hall.

Grable, John E. y. Angela C.Lyons. 2018. “An Introduction to Big Data”. Journal of Financial Service Professionals 72 (5): 17-20.

Graham, Williams. 2011. Data Mining with Rattle and R. The Art of Excavating Data for Knowledge Discovery. Nueva York: Springer Science Business Media.

Gupta, Deepak y RinkleRani. 2019. “A Study of Big Data Evolution and Research Challenges”. Journal of Information Science 45 (3): 322-340. https://doi.org/10.1177/0165551518789880

Han, Jiawey, MichellineKamber y JianPei. 2011. Data Mining: Concepts and Techniques. Nueva York: Springer.

Hand, David J., HeikkiMannila y PadhraicSmyth. 2001. Principles of Data Mining. Cambridge: A Bradford Book-The MIT Press.

Haraway, Donna. 1991. Simians, Cyborgs and Women: The Reinvention of Nature. Nueva York: Routledge.

Hilbert, Martin. 2016. “Big Data for Development: A Review of Promises and Challenges”. Development Policy Review 34 (1): 135-174. https://doi.org/10.1111/dpr.12142

Hilbert, Martin y PriscilaLópez. 2011. “The World’s Technological Capacity to Store, Communicate, and Compute Information”. Science 332 (6025): 60-65. https://doi.org/10.1126/science.1200970

Honderich, Ted. 2005. “Determinism”. En New Dictionary of the History of Ideas, editado por MaryanneCline Horowitz, 567-570. Detroit, MI: Charles Scribner’s Sons.

Juergensmeyer, Mark. 2012. “Global Studies”. En Encyclopedia of Global Studies, editado por MarkJuergensmeyer y HelmutAnheier, 849-861. Thousand Oaks, CA: Sage.

Juergensmeyer, Mark. 2013. Introducción a Thinking Globally: A Global Studies Reader, editado por MarkJuergensmeyer, 3-9. Berkeley, CA: University of California Press.

Kitchin, Rob. 2014. “Big Data, New Epistemologies and Paradigm Shifts”. Big Data & Society 1 (1): 1-12. https://doi.org/10.1177%2F2053951714528481

Klösgen, Willi y Jan M.Zytkow. 2002. “The Knowledge Discovery Process”. En Handbook of Data Mining and Knowledge Discovery, editado por WilliKlösgen, Jan M.Żytkow y Jan M.Zytkow, 10-21. Oxford: Oxford University Press.

Lafrate, Fernando. 2018. Artificial Intelligence and Big Data: The Birth of a New Intelligence. Hoboken, NJ: Wiley-ISTE.

Larose, Daniel T. y Chantal D.Larose. 2014. Discovering Knowledge in Data: An Introduction to Data Mining. Hoboken, NJ: John Wiley & Sons.

Lin, Jimmy. 2015. “On Building Better Mousetraps and Understanding the Human Condition: Reflections on Big Data in the Social Sciences”. The Annals of the American Academy of Political and Social Science 659 (1): 33-47. https://doi.org/10.1177/0002716215569174

Mathivanan, Sandeepkumar y PrabhuJayagopal. 2019. “A Big Data Virtualization Role in Agriculture: A Comprehensive Review”. Walailak Journal of Science & Technology 16 (2): 55-70.

Mayer-Schönberger, Viktor y KennethCukier. 2013. Big Data: A Revolution that Will Transform how We Live, Work, and Think. Londres: John Murray Publisher.

Mieczkowski, Yaneck. 2013. Eisenhower’s Sputnik Moment: The Race for Space and World Prestige. Ithaca, New York: Cornell University Press.

Mittelstadt, Brent Daniel, PatrickAllo, MariarosariaTaddeo, SandraWachter y LucianoFloridi. 2016. “The Ethics of Algorithms: Mapping the Debate”. Big Data & Society 3 (1): 1-21. https://doi.org/10.1177/2053951716679679

Monroe, Burt L., JenniferPan Ha, Margaret E.Roberts, MayaSen y BetsySinclair. 2015. “No! Formal Theory, Causal Inference, and Big Data Are not Contradictory Trends in Political Science”. PS: Political Science & Politics 48 (1): 71-74. http://j.mp/2oFt5VN

NacionesUnidas. 2014. “Data Revolution Report: A World That Counts”. Naciones Unidas. Consultado el 27 de enero de 2020. http://www.undatarevolution.org/report/

Nederveen Pieterse, Jan. 2013. “What is Global Studies?”. Globalizations 10 (4): 499-514. https://doi.org/10.1080/14747731.2013.806746

Nunan, Daniel y María Laura diDomenico. 2013. “Market Research and the Ethics of Big Data”. International Journal of Market Research 55 (4): 505-520. https://doi.org/10.2501/IJMR-2013-015

Ochrana, Frantisek. 2015. Methodology of Social Sciences. Praga: Karolinum Press.

Ribes, David y Steven J.Jackson. 2013. “Data Bite Man: The Work of Sustaining Long-Term Study”. En Raw Data is an Oxymoron, editado por LisaGitelman, 147-166. Cambridge, MA: The MIT Press.

Riquelme, José C., RobertoRuiz y KarinaGilbert. 2006. “Minería de datos: conceptos y tendencias”. Inteligencia Artificial 10 (29): 11-18.

Ryan, Johnny. 2009. A History of the Internet and the Digital Future. Londres: Reaktion Books Limited.

Saldaña, Johnny. 2011. Fundamentals of Qualitative Research. Nueva York: Oxford University Press.

Saouabi, Mohamed y EzzatiAbdellah. 2019. “Proposition of an Employability Prediction System Using Data Mining Techniques in a Big Data Environment”. International Journal of Mathematics & Computer Science 14 (2): 411-424.

Shan, Dhavan V., Joseph N.Cappela, NeumanRussel y JimmyLi. 2015. “On Building Better Mousetraps and Understanding the Human Condition: Reflections on Big Data in the Social Sciences”. Annals 659: 33-47. https://doi.org/10.1177/0002716215569174

Simpson, Dana. 2016. The Use of Big Data: Benefits, Risks, and Differential Pricing Issues.Nueva York: Nova Science Publisher.

Van der Aalst, Wil. 2014. “Data Scientist: The Engineer of the Future”. En Enterprise Interoperability IV, editado por KaiMertins, FrédérickBénaben, RaúlPoler y Jean-PaulBourrières, 13-28. Nueva York: Springer.

Ware, Colin. 2012. Information Visualization: Perception for Design. Ámsterdam: Elsevier.

License