Colombia Internacional

Colomb. int. | eISSN 1900-6004 | ISSN 0121-5612

Ciência de dados e estudos globais: contribuições e desafios metodológicos

No. 102 (2020-04-01)
  • Daniel Lemus-Delgado
    Tecnológico de Monterrey (México)
  • Ricardo Pérez Navarro
    Tecnológico de Monterrey (México)

Resumo

OBJETIVO/CONTEXTO: A ciência de dados é considerada uma abordagem nova e promissora, utilizada por várias disciplinas científicas para a obtenção e análise de informações. Apesar de sua ampla disseminação e aceitação, o uso de técnicas baseadas na ciência de dados no campo de estudos globais está em estágio inicial. Nesse contexto, este artigo tem como objetivo discutir as contribuições e desafios metodológicos que a ciência de dados pode trazer para a disciplina de estudos globais. Metodologia: Este artigo analisa críticamente os fundamentos conceituais da ciência de dados e os compara com as possíveis aplicações na área de estudos globais. Desse modo, este artigo examina os elementos conceituais que definem a ciência de dados, estabelece os paradigmas conceituais dos estudos globais, analisa as possíveis ligações entre ciência de dados e estudos globais, e discute como os limites e alcance da ciência de dados pode contribuir como abordagem metodológica. Conclusões: este artigo conclui que as ferramentas tecnológicas baseadas em big data podem enriquecer nossa compreensão sobre os fenômenos globais, desde que seja assumida uma atitude crítica que reconheça que a seleção dos dados e sua análise estão incorporadas em contextos históricos e sociais. Deste modo, como em qualquer outra abordagem, a ciência de dados representa um modo tendencioso de capturar e analisar informações. Originalidade: a originalidade deste artigo consiste em assumir uma reflexão crítica sobre o alcance e os limites da ciência de dados, além de fornecer uma visão positivista do conhecimento científico, reconhecendo a parcialidade que existe por trás das explicações supostamente neutras sobre o emprego de técnicas de pesquisa baseadas em ciência de dados.

Palavras-chave: Estudos globais, ciências de dados, Pesquisa científica, metodologia

Referências

Appelbaum, Richard P. 2013. “Comments on Jan Nederveen Pieterse’s Essay, ‘What is Global Studies?’”. Globalizations 10 (4): 545-550. https://10.1080/14747731.2013.806727

Aradau, Claudia y TobíasBlanke. 2016. “Politics of Prediction: Security and the Time/Space of Governmentality in the Age of Big Data”. European Journal of Social Theory 20 (3): 373-391. https://doi.org/10.1177/1368431016667623

Araya, Agustín A. 2005. “Internet”. En Encyclopedia of Science, Technology, and Ethics, editado por CarlMitcham, 1048-1052. Detroit, MI: Macmillan Reference

Arteaga, Carlos, RobertoBermúdez y GuillermoCampos. 2004. Ciencias sociales e investigación social. Ciudad de México: Universidad Nacional Autónoma de México.

Attewell, Paul y DavidMonaghan. 2015. Data Mining for the Social Sciences: An Introduction. Oakland: University of California Press.

Barranco, Ricardo. 2012. “¿Qué es Big Data? Todos formamos parte de ese gran crecimiento de datos”. IBM. Consultado el 27 de enero de 2020. https://www.ibm.com/developerworks/ssa/local/im/que-es-big-data/index.html

Boyd, Danah y KateCrawford. 2012. “Critical Questions for Big Data”. Information, Communication & Society 15 (5): 662-679. https://doi.org/10.1080/1369118X.2012.678878

Campbell, Patricia J., AranMacKinnon y Christy R.Stevens. 2010. An Introduction to Global Studies. Malden: Wiley-Blackwell.

Catalán Fernández, Albert y M. CatanyEscandell. 1986. “Contra el mito de la neutralidad de la ciencia. El papel de la historia”. Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas 4 (2): 163-166.

Chitra, Kandan y BalakrishnanSubashini. 2013. “Data Mining Techniques and its Applications in Banking Sector”. International Journal of Emerging Technology and Advanced Engineering 3(8): 220-222.

Clare, Susan E. y Pamela L.Shaw. 2016. “Big Data” for Breast Cancer: Where to Look and what You Will Find”. NPJ Breast Cancer 2: 1-5. https://doi.org/10.1038/npjbcancer.2016.31

Cowls, Josh y RalphSchroeder. 2015. “Causation, Correlation, and Big Data in Social Science Research”. Policy & Internet 7 (4): 447-472. https://doi.org/10.1002/poi3.100

Cox, Michael y DavidEllsworth. 1997. “Application-Controlled Demand Paging for Out-of-Core Visualization”. https://www.nas.nasa.gov/assets/pdf/techreports/1997/nas-97-010.pdf

Crawford, Kate. 2013. “The Hidden Biases of Big Data”. Harvard Business Review 1: 2013. https://hbr.org/2013/04/the-hidden-biases-in-big-data

Darian-Smith, Eve y Philip C.McCarty. 2017. The Global Turn: Theories, Research Designs, and Methods for Global Studies. Berkeley, CA: University of California Press.

Davenport, Thomas H. y DhanurjayPatil. 2012. “Data Scientist: The Sexiest Job of the 21st Century”. Harvard Business Review 90 (10): 5-7.

Della Porta, Donatella y MichaelKeating. 2008. Introducción a Approaches and Methodologies in the Social Sciences, editado por Donatella dellaPorta y MichaelKeating, 1-15. Cambridge: Cambridge University Press.

Dourish, Paul y Edgar GómezCruz. 2018. “Datafication and Data Fiction: Narrating Data and Narrating with Data”. Big Data & Society 5 (2): 1-10. https://doi.org/10.1177/2053951718784083

Drucker, Peter F. 1993. Post-Capitalist Society. Oxford: Butterworth-Heinemann.

Everitt, Brian S. 2002. “Parsimony Principle”. En Cambridge Dictionary of Statistics, editado por Brian S.Everitt, 272. Cambridge: Cambridge University Press.

Few, Stephen. 2013. “Data Visualization for Human Perception”. En The Encyclopedia of Human-Computer Interaction, editado por ConstantineStephanidis, capítulo 35. Aarhus, Dinamarca: The Interaction Design Foundation.

Foster, Ian, RayidGhani, Ron S.Jarmin, FraukeKreuter y JuliaLane. 2016. Big Data and Social Science: A Practical Guide to Methods and Tools. Nueva York: Chapman & Hall.

Grable, John E. y. Angela C.Lyons. 2018. “An Introduction to Big Data”. Journal of Financial Service Professionals 72 (5): 17-20.

Graham, Williams. 2011. Data Mining with Rattle and R. The Art of Excavating Data for Knowledge Discovery. Nueva York: Springer Science Business Media.

Gupta, Deepak y RinkleRani. 2019. “A Study of Big Data Evolution and Research Challenges”. Journal of Information Science 45 (3): 322-340. https://doi.org/10.1177/0165551518789880

Han, Jiawey, MichellineKamber y JianPei. 2011. Data Mining: Concepts and Techniques. Nueva York: Springer.

Hand, David J., HeikkiMannila y PadhraicSmyth. 2001. Principles of Data Mining. Cambridge: A Bradford Book-The MIT Press.

Haraway, Donna. 1991. Simians, Cyborgs and Women: The Reinvention of Nature. Nueva York: Routledge.

Hilbert, Martin. 2016. “Big Data for Development: A Review of Promises and Challenges”. Development Policy Review 34 (1): 135-174. https://doi.org/10.1111/dpr.12142

Hilbert, Martin y PriscilaLópez. 2011. “The World’s Technological Capacity to Store, Communicate, and Compute Information”. Science 332 (6025): 60-65. https://doi.org/10.1126/science.1200970

Honderich, Ted. 2005. “Determinism”. En New Dictionary of the History of Ideas, editado por MaryanneCline Horowitz, 567-570. Detroit, MI: Charles Scribner’s Sons.

Juergensmeyer, Mark. 2012. “Global Studies”. En Encyclopedia of Global Studies, editado por MarkJuergensmeyer y HelmutAnheier, 849-861. Thousand Oaks, CA: Sage.

Juergensmeyer, Mark. 2013. Introducción a Thinking Globally: A Global Studies Reader, editado por MarkJuergensmeyer, 3-9. Berkeley, CA: University of California Press.

Kitchin, Rob. 2014. “Big Data, New Epistemologies and Paradigm Shifts”. Big Data & Society 1 (1): 1-12. https://doi.org/10.1177%2F2053951714528481

Klösgen, Willi y Jan M.Zytkow. 2002. “The Knowledge Discovery Process”. En Handbook of Data Mining and Knowledge Discovery, editado por WilliKlösgen, Jan M.Żytkow y Jan M.Zytkow, 10-21. Oxford: Oxford University Press.

Lafrate, Fernando. 2018. Artificial Intelligence and Big Data: The Birth of a New Intelligence. Hoboken, NJ: Wiley-ISTE.

Larose, Daniel T. y Chantal D.Larose. 2014. Discovering Knowledge in Data: An Introduction to Data Mining. Hoboken, NJ: John Wiley & Sons.

Lin, Jimmy. 2015. “On Building Better Mousetraps and Understanding the Human Condition: Reflections on Big Data in the Social Sciences”. The Annals of the American Academy of Political and Social Science 659 (1): 33-47. https://doi.org/10.1177/0002716215569174

Mathivanan, Sandeepkumar y PrabhuJayagopal. 2019. “A Big Data Virtualization Role in Agriculture: A Comprehensive Review”. Walailak Journal of Science & Technology 16 (2): 55-70.

Mayer-Schönberger, Viktor y KennethCukier. 2013. Big Data: A Revolution that Will Transform how We Live, Work, and Think. Londres: John Murray Publisher.

Mieczkowski, Yaneck. 2013. Eisenhower’s Sputnik Moment: The Race for Space and World Prestige. Ithaca, New York: Cornell University Press.

Mittelstadt, Brent Daniel, PatrickAllo, MariarosariaTaddeo, SandraWachter y LucianoFloridi. 2016. “The Ethics of Algorithms: Mapping the Debate”. Big Data & Society 3 (1): 1-21. https://doi.org/10.1177/2053951716679679

Monroe, Burt L., JenniferPan Ha, Margaret E.Roberts, MayaSen y BetsySinclair. 2015. “No! Formal Theory, Causal Inference, and Big Data Are not Contradictory Trends in Political Science”. PS: Political Science & Politics 48 (1): 71-74. http://j.mp/2oFt5VN

NacionesUnidas. 2014. “Data Revolution Report: A World That Counts”. Naciones Unidas. Consultado el 27 de enero de 2020. http://www.undatarevolution.org/report/

Nederveen Pieterse, Jan. 2013. “What is Global Studies?”. Globalizations 10 (4): 499-514. https://doi.org/10.1080/14747731.2013.806746

Nunan, Daniel y María Laura diDomenico. 2013. “Market Research and the Ethics of Big Data”. International Journal of Market Research 55 (4): 505-520. https://doi.org/10.2501/IJMR-2013-015

Ochrana, Frantisek. 2015. Methodology of Social Sciences. Praga: Karolinum Press.

Ribes, David y Steven J.Jackson. 2013. “Data Bite Man: The Work of Sustaining Long-Term Study”. En Raw Data is an Oxymoron, editado por LisaGitelman, 147-166. Cambridge, MA: The MIT Press.

Riquelme, José C., RobertoRuiz y KarinaGilbert. 2006. “Minería de datos: conceptos y tendencias”. Inteligencia Artificial 10 (29): 11-18.

Ryan, Johnny. 2009. A History of the Internet and the Digital Future. Londres: Reaktion Books Limited.

Saldaña, Johnny. 2011. Fundamentals of Qualitative Research. Nueva York: Oxford University Press.

Saouabi, Mohamed y EzzatiAbdellah. 2019. “Proposition of an Employability Prediction System Using Data Mining Techniques in a Big Data Environment”. International Journal of Mathematics & Computer Science 14 (2): 411-424.

Shan, Dhavan V., Joseph N.Cappela, NeumanRussel y JimmyLi. 2015. “On Building Better Mousetraps and Understanding the Human Condition: Reflections on Big Data in the Social Sciences”. Annals 659: 33-47. https://doi.org/10.1177/0002716215569174

Simpson, Dana. 2016. The Use of Big Data: Benefits, Risks, and Differential Pricing Issues.Nueva York: Nova Science Publisher.

Van der Aalst, Wil. 2014. “Data Scientist: The Engineer of the Future”. En Enterprise Interoperability IV, editado por KaiMertins, FrédérickBénaben, RaúlPoler y Jean-PaulBourrières, 13-28. Nueva York: Springer.

Ware, Colin. 2012. Information Visualization: Perception for Design. Ámsterdam: Elsevier.

Licença