Voces y Silencios. Revista Latinoamericana de Educación

Voces silec. rev. latinoam. educ. | eISSN 2215-8421

Reflexionando sobre la integración de la inteligencia artificial generativa en la educación en diseño: lecciones desde el campo

No. 2 (2025-05-31)

Resumen

Este artículo testimonial reflexiona sobre la integración de la inteligencia artificial generativa (IAG) en la educación del diseño a través de tres experiencias distintas: exploraciones personales como diseñador y educador, aprendizaje colaborativo del profesorado en tecnología del diseño, e integración en un curso de diseño digital a nivel de pregrado. Este artículo tiene como objetivo contribuir a las discusiones sobre cómo las herramientas de IAG pueden apoyar las prácticas creativas y educativas. Se emplea un enfoque fenomenológico para documentar estas experiencias y se evalúa el impacto de la inteligencia artificial (IA) en la creatividad, las prácticas pedagógicas y los resultados de aprendizaje. El marco teórico se basa en la teoría del aprendizaje constructivista; la teoría del aprendizaje experiencial de Kolb; la práctica reflexiva; el conocimiento tecnológico, pedagógico y de contenido; y el concepto de la democratización de la creatividad. Estas perspectivas teóricas permiten analizar cómo los estudiantes y educadores construyen conocimiento a través de la interacción con tecnologías de IA, iteran en ciclos de experimentación y reflexionan sobre su práctica. El análisis revela el papel transformador de la IAG para mejorar la equidad educativa y el compromiso creativo, al tiempo que destaca consideraciones éticas como los sesgos, la propiedad intelectual y los riesgos de una dependencia excesiva. Este artículo invita a los educadores a involucrarse críticamente con la IA, para lo cual propone estrategias que facilitan integrar estas tecnologías de manera reflexiva en la educación del diseño.

Palabras clave: aprendizaje experiencial, educación en diseño, educación superior, inteligencia artificial generativa, teoría constructivista

Referencias

Ahmad, S. F., Han, H., Alam, M. M., Rehmat, M. K., Irshad, M., Arraño-Muñoz, M., & Ariza-Montes, A. (2023). Impact of artificial intelligence on human loss in decision making, laziness, and safety in education. Humanities and Social Sciences Communications, 10, 311. https://doi.org/10.1057/s41599-023-01787-8

Bartlett, K. A., & Camba, J. D. (2024). Generative artificial intelligence in product design education: Navigating concerns of originality and ethics. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 55–64. https://doi.org/10.9781/ijimai.2024.02.006

Batista, J., Mesquita, A., & Carnaz, G. (2024). Generative AI and higher education: Trends, challenges, and future directions from a systematic literature review. Information, 15(11), Article 676. https://doi.org/10.3390/info15110676

Bozkurt, A., & Sharma, R. C. (2023). Challenging the status quo and exploring the new boundaries in the age of algorithms: Reimagining the role of generative AI in distance education and online learning. Asian Journal of Distance Education, 18(21), i-viii. https://doi.org/10.5281/zenodo.7755273

Chen, J. (2024). The role of AI: Speculative design in redefining artistic collaboration. Journal of Ecohumanism, 3(8), 2261–2272. https://doi.org/10.62754/joe.v3i8.4899

Chen, B., Zhu, X., & Díaz del Castillo H., F. (2023). Integrating generative AI in knowledge building. Computers and Education: Artificial Intelligence, 5, 100184. https://doi.org/10.1016/j.caeai.2023.100184

Chiu, T. K. F. (2024). Future research recommendations for transforming higher education with generative AI. Computers and Education: Artificial Intelligence, 6, Article 100197. https://doi.org/10.1016/j.caeai.2023.100197

Crawford, J., Allen, K. A., Pani, B., & Cowling, M. (2024). When artificial intelligence substitutes humans in higher education: the cost of loneliness, student success, and retention. Studies in Higher Education, 49(5), 883–897. https://doi.org/10.1080/03075079.2024.2326956

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.

Duggal, S. D. (2024, April 9). Democratized creativity: The evolution and impact of AI. Forbes. https://www.forbes.com/councils/forbestechcouncil/2024/04/09/democratized-creativity-theevolution-andimpact-of-ai/

Eapen, T. T., Finkenstadt, D. J., Folk, J., & Venkataswamy, L. (2023). How generative AI can augment human creativity: Use it to promote divergent thinking. Harvard Business Review, 101(4), 56–64. https://hbr.org/2023/07/how-generative-ai-can-augment-human-creativity

Escobar, A. (2017). Designs for the pluriverse: Radical interdependence, autonomy, and the making of worlds. Duke University Press. http://www.jstor.org/stable/j.ctv11smgs6

Fathoni, A. F. C. A. (2023). Leveraging generative AI solutions in art and design education: Bridging sustainable creativity and fostering academic integrity for innovative society. E3S Web of Conferences, 426, Article 01102. https://doi.org/10.1051/e3sconf/202342601102

Fleischmann, K. (2015). The democratisation of design and design learning: How do we educate the nextgeneration designer. International Journal of Arts & Sciences, 8(6), 101–108.

Fosnot, C. T. (2005). Constructivism: Theory, perspectives, and practice. Teachers College Press.

Ghimire, A., Prather, J., & Edwards, J. (2024). Generative AI in education: A study of educators’ awareness, sentiments, and influencing factors [preprint]. arXiv (arXiv:2403.15586). http://arxiv.org/abs/2403.15586

Gmeiner, F., Yang, H., Yao, L., Holstein, K., & Martelaro, N. (2023, April 19). Exploring challenges and opportunities to support designers in learning to co-create with AI-based manufacturing design tools. In A. Schmidt, K. Väänänen, T. Goyal, P. O. Kristensson, A.a Peters, S. Mueller, J. R. Williamson, M. L. Wilson (Eds.), CHI ‘23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (Article 226). https://doi.org/10.1145/3544548.3580999

Günaydin Donduran, C., Kasali, A., & Dogan, F. (2024). Artificial intelligence as a pedagogical tool for architectural design education. Journal of Design Studio, 6(2), 219–229. https://doi.org/10.46474/jds.1533480

Holstein, K., & Aleven, V. (2022). Designing for human–AI complementarity in K-12 education. AI Magazine, 43(2), 239–248. https://doi.org/10.1002/aaai.12058

Hughes, R. T., Zhu, L., & Bednarz, T. (2021). Generative adversarial networks–enabled human–artificial intelligence collaborative applications for creative and design industries: A systematic review of current approaches and trends. Frontiers in Artificial Intelligence, 4. https://doi.org/10.3389/frai.2021.604234

Jin, Y., Yan, L., Echeverria, V., Gašević, D., & Martinez-Maldonado, R. (2024). Generative AI in higher education: A global perspective of institutional adoption policies and guidelines. Computers and Education: Artificial Intelligence, 8, Article 100348. https://doi.org/10.1016/j.caeai.2024.100348

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.

Kumar, S., Gunn, A., Rose, R., Pollard, R., Johnson, M., & Ritzhaupt, A. D. (2024). The role of instructional designers in the integration of generative artificial intelligence in online and blended learning in higher education. Online Learning Journal, 28(3), 207–231. https://doi.org/10.24059/olj.v28i3.4501

Li, Z. (2024). Generative AI in higher education academic assignments: Policy implications from a systematic review of student and teacher perceptions [master’s thesis, Massachusetts Institute of Technology]. MIT DSpace. https://hdl.handle.net/1721.1/155977

Lively, J., Hutson, J., & Melick, E. (2023). Integrating AI-generative tools in web design education: Enhancing student aesthetic and creative copy capabilities using image and text-based AI generators. DS Journal of Artificial Intelligence and Robotics (DS-AIR), 1(1), 23–33. https://doi.org/10.59232/AIR-V1I1P103

Lubart, T. (2005). How can computers be partners in the creative process: Classification and commentary on the special issue. International Journal of Human-Computer Studies, 63(4-5), 365–369. https://www.sciencedirect.com/science/article/abs/pii/S1071581905000418

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson.

Meron, Y., & Tekmen Araci, Y. (2023). Artificial intelligence in design education: Evaluating ChatGPT as a virtual colleague for post-graduate course development. Design Science, 9, Article e30. https://doi.org/10.1017/dsj.2023.28

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x

Mollick, E. R., & Mollick, L. (2024). Instructors as innovators: A future-focused approach to new AI learning opportunities, with prompts. The Wharton School Research Paper. http://dx.doi.org/10.2139/ssrn.4802463

Mulyani, H., Istiaq, M. A., Shauki, E. R., Kurniati, F., & Arlinda, H. (2025). Transforming education: Exploring the influence of generative AI on teaching performance. Cogent Education, 12(1), Article 2448066. https://doi.org/10.1080/2331186X.2024.2448066

Piaget, J. (1970). Science of education and the psychology of the child. Orion Press.

Saúde, S., Barros, J. P., & Almeida, I. (2024). Impacts of generative artificial intelligence in higher education: Research trends and students’ perceptions. Social Sciences, 13(8). https://doi.org/10.3390/socsci13080410

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. Basic Books.

Song, B., Zhu, Q., & Luo, J. (2024). Human-AI collaboration by design. Proceedings of the Design Society, 4, 2247–2256. https://doi.org/10.1017/pds.2024.227

Sullivan, M., Kelly, A. & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching, 6(1), 31–40. https://doi.org/10.37074/jalt.2023.6.1.17

Tang, L., & Su, Y.-S. (2024). Ethical implications and principles of using artificial intelligence models in the classroom: A systematic literature review. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 25–36. https://doi.org/10.9781/ijimai.2024.02.010

Tanksley, T. C. (2024). “We’re changing the system with this one”: Black students using critical race algorithmic literacies to subvert and survive AI-mediated racism in school. English Teaching: Practice & Critique, 23(1), 36–56. https://doi.org/10.1108/ETPC-08-2023-0102

Tellez, F. A., & Parrish, L. A. (in press). AI as a tool for beginning design students: Reflections from a case study on generative AI in an introductory design course. In National Conference of Beginning Design Education (NCBDS) 2025. North Carolina State University.

UNESCO. (2024). Generation AI: Navigating the opportunities and risks of artificial intelligence in education. https://www.unesco.org/en/articles/generation-ai-navigating-opportunities-and-risks-artificialintelligence-education

Van Brummelen, J., & Lin, P. (2020). Engaging teachers to co-design integrated AI curriculum for K-12 classrooms [preprint]. arXiv (arXiv:2009.11100). http://arxiv.org/abs/2009.11100

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. JolmSteiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press. https://doi.org/10.2307/j.ctvjf9vz4

Wood, D., & Moss, S. H. (2024). Evaluating the impact of students’ generative AI use in educational contexts. Journal of Research in Innovative Teaching & Learning, 17(2), 152–167. https://doi.org/10.1108/JRIT06-2024-0151

Zaim, M., Arsyad, S., Waluyo, B., Ardi, H., Al Hafizh, M., Zakiyah, M., Syafitri, W., Nusi, A., & Hardiah, M. (2024). AI-powered EFL pedagogy: Integrating generative AI into university teaching preparation through UTAUT and activity theory. Computers and Education: Artificial Intelligence, 7. https://doi.org/10.1016/j.caeai.2024.100335