Reflexionando sobre la integración de la inteligencia artificial generativa en la educación en diseño: lecciones desde el campo
No. 2 (2025-05-31)Autor/a(es/as)
-
Fabio Andres TellezNorth Carolina State UniversityIdentificador ORCID: https://orcid.org/0000-0002-2094-3722
Resumen
Este artículo testimonial reflexiona sobre la integración de la inteligencia artificial generativa (IAG) en la educación del diseño a través de tres experiencias distintas: exploraciones personales como diseñador y educador, aprendizaje colaborativo del profesorado en tecnología del diseño, e integración en un curso de diseño digital a nivel de pregrado. Este artículo tiene como objetivo contribuir a las discusiones sobre cómo las herramientas de IAG pueden apoyar las prácticas creativas y educativas. Se emplea un enfoque fenomenológico para documentar estas experiencias y se evalúa el impacto de la inteligencia artificial (IA) en la creatividad, las prácticas pedagógicas y los resultados de aprendizaje. El marco teórico se basa en la teoría del aprendizaje constructivista; la teoría del aprendizaje experiencial de Kolb; la práctica reflexiva; el conocimiento tecnológico, pedagógico y de contenido; y el concepto de la democratización de la creatividad. Estas perspectivas teóricas permiten analizar cómo los estudiantes y educadores construyen conocimiento a través de la interacción con tecnologías de IA, iteran en ciclos de experimentación y reflexionan sobre su práctica. El análisis revela el papel transformador de la IAG para mejorar la equidad educativa y el compromiso creativo, al tiempo que destaca consideraciones éticas como los sesgos, la propiedad intelectual y los riesgos de una dependencia excesiva. Este artículo invita a los educadores a involucrarse críticamente con la IA, para lo cual propone estrategias que facilitan integrar estas tecnologías de manera reflexiva en la educación del diseño.
Referencias
Ahmad, S. F., Han, H., Alam, M. M., Rehmat, M. K., Irshad, M., Arraño-Muñoz, M., & Ariza-Montes, A. (2023). Impact of artificial intelligence on human loss in decision making, laziness, and safety in education. Humanities and Social Sciences Communications, 10, 311. https://doi.org/10.1057/s41599-023-01787-8
Bartlett, K. A., & Camba, J. D. (2024). Generative artificial intelligence in product design education: Navigating concerns of originality and ethics. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 55–64. https://doi.org/10.9781/ijimai.2024.02.006
Batista, J., Mesquita, A., & Carnaz, G. (2024). Generative AI and higher education: Trends, challenges, and future directions from a systematic literature review. Information, 15(11), Article 676. https://doi.org/10.3390/info15110676
Bozkurt, A., & Sharma, R. C. (2023). Challenging the status quo and exploring the new boundaries in the age of algorithms: Reimagining the role of generative AI in distance education and online learning. Asian Journal of Distance Education, 18(21), i-viii. https://doi.org/10.5281/zenodo.7755273
Chen, J. (2024). The role of AI: Speculative design in redefining artistic collaboration. Journal of Ecohumanism, 3(8), 2261–2272. https://doi.org/10.62754/joe.v3i8.4899
Chen, B., Zhu, X., & Díaz del Castillo H., F. (2023). Integrating generative AI in knowledge building. Computers and Education: Artificial Intelligence, 5, 100184. https://doi.org/10.1016/j.caeai.2023.100184
Chiu, T. K. F. (2024). Future research recommendations for transforming higher education with generative AI. Computers and Education: Artificial Intelligence, 6, Article 100197. https://doi.org/10.1016/j.caeai.2023.100197
Crawford, J., Allen, K. A., Pani, B., & Cowling, M. (2024). When artificial intelligence substitutes humans in higher education: the cost of loneliness, student success, and retention. Studies in Higher Education, 49(5), 883–897. https://doi.org/10.1080/03075079.2024.2326956
Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.
Duggal, S. D. (2024, April 9). Democratized creativity: The evolution and impact of AI. Forbes. https://www.forbes.com/councils/forbestechcouncil/2024/04/09/democratized-creativity-theevolution-andimpact-of-ai/
Eapen, T. T., Finkenstadt, D. J., Folk, J., & Venkataswamy, L. (2023). How generative AI can augment human creativity: Use it to promote divergent thinking. Harvard Business Review, 101(4), 56–64. https://hbr.org/2023/07/how-generative-ai-can-augment-human-creativity
Escobar, A. (2017). Designs for the pluriverse: Radical interdependence, autonomy, and the making of worlds. Duke University Press. http://www.jstor.org/stable/j.ctv11smgs6
Fathoni, A. F. C. A. (2023). Leveraging generative AI solutions in art and design education: Bridging sustainable creativity and fostering academic integrity for innovative society. E3S Web of Conferences, 426, Article 01102. https://doi.org/10.1051/e3sconf/202342601102
Fleischmann, K. (2015). The democratisation of design and design learning: How do we educate the nextgeneration designer. International Journal of Arts & Sciences, 8(6), 101–108.
Fosnot, C. T. (2005). Constructivism: Theory, perspectives, and practice. Teachers College Press.
Ghimire, A., Prather, J., & Edwards, J. (2024). Generative AI in education: A study of educators’ awareness, sentiments, and influencing factors [preprint]. arXiv (arXiv:2403.15586). http://arxiv.org/abs/2403.15586
Gmeiner, F., Yang, H., Yao, L., Holstein, K., & Martelaro, N. (2023, April 19). Exploring challenges and opportunities to support designers in learning to co-create with AI-based manufacturing design tools. In A. Schmidt, K. Väänänen, T. Goyal, P. O. Kristensson, A.a Peters, S. Mueller, J. R. Williamson, M. L. Wilson (Eds.), CHI ‘23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (Article 226). https://doi.org/10.1145/3544548.3580999
Günaydin Donduran, C., Kasali, A., & Dogan, F. (2024). Artificial intelligence as a pedagogical tool for architectural design education. Journal of Design Studio, 6(2), 219–229. https://doi.org/10.46474/jds.1533480
Holstein, K., & Aleven, V. (2022). Designing for human–AI complementarity in K-12 education. AI Magazine, 43(2), 239–248. https://doi.org/10.1002/aaai.12058
Hughes, R. T., Zhu, L., & Bednarz, T. (2021). Generative adversarial networks–enabled human–artificial intelligence collaborative applications for creative and design industries: A systematic review of current approaches and trends. Frontiers in Artificial Intelligence, 4. https://doi.org/10.3389/frai.2021.604234
Jin, Y., Yan, L., Echeverria, V., Gašević, D., & Martinez-Maldonado, R. (2024). Generative AI in higher education: A global perspective of institutional adoption policies and guidelines. Computers and Education: Artificial Intelligence, 8, Article 100348. https://doi.org/10.1016/j.caeai.2024.100348
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.
Kumar, S., Gunn, A., Rose, R., Pollard, R., Johnson, M., & Ritzhaupt, A. D. (2024). The role of instructional designers in the integration of generative artificial intelligence in online and blended learning in higher education. Online Learning Journal, 28(3), 207–231. https://doi.org/10.24059/olj.v28i3.4501
Li, Z. (2024). Generative AI in higher education academic assignments: Policy implications from a systematic review of student and teacher perceptions [master’s thesis, Massachusetts Institute of Technology]. MIT DSpace. https://hdl.handle.net/1721.1/155977
Lively, J., Hutson, J., & Melick, E. (2023). Integrating AI-generative tools in web design education: Enhancing student aesthetic and creative copy capabilities using image and text-based AI generators. DS Journal of Artificial Intelligence and Robotics (DS-AIR), 1(1), 23–33. https://doi.org/10.59232/AIR-V1I1P103
Lubart, T. (2005). How can computers be partners in the creative process: Classification and commentary on the special issue. International Journal of Human-Computer Studies, 63(4-5), 365–369. https://www.sciencedirect.com/science/article/abs/pii/S1071581905000418
Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson.
Meron, Y., & Tekmen Araci, Y. (2023). Artificial intelligence in design education: Evaluating ChatGPT as a virtual colleague for post-graduate course development. Design Science, 9, Article e30. https://doi.org/10.1017/dsj.2023.28
Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
Mollick, E. R., & Mollick, L. (2024). Instructors as innovators: A future-focused approach to new AI learning opportunities, with prompts. The Wharton School Research Paper. http://dx.doi.org/10.2139/ssrn.4802463
Mulyani, H., Istiaq, M. A., Shauki, E. R., Kurniati, F., & Arlinda, H. (2025). Transforming education: Exploring the influence of generative AI on teaching performance. Cogent Education, 12(1), Article 2448066. https://doi.org/10.1080/2331186X.2024.2448066
Piaget, J. (1970). Science of education and the psychology of the child. Orion Press.
Saúde, S., Barros, J. P., & Almeida, I. (2024). Impacts of generative artificial intelligence in higher education: Research trends and students’ perceptions. Social Sciences, 13(8). https://doi.org/10.3390/socsci13080410
Schön, D. A. (1983). The reflective practitioner: How professionals think in action. Basic Books.
Song, B., Zhu, Q., & Luo, J. (2024). Human-AI collaboration by design. Proceedings of the Design Society, 4, 2247–2256. https://doi.org/10.1017/pds.2024.227
Sullivan, M., Kelly, A. & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching, 6(1), 31–40. https://doi.org/10.37074/jalt.2023.6.1.17
Tang, L., & Su, Y.-S. (2024). Ethical implications and principles of using artificial intelligence models in the classroom: A systematic literature review. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 25–36. https://doi.org/10.9781/ijimai.2024.02.010
Tanksley, T. C. (2024). “We’re changing the system with this one”: Black students using critical race algorithmic literacies to subvert and survive AI-mediated racism in school. English Teaching: Practice & Critique, 23(1), 36–56. https://doi.org/10.1108/ETPC-08-2023-0102
Tellez, F. A., & Parrish, L. A. (in press). AI as a tool for beginning design students: Reflections from a case study on generative AI in an introductory design course. In National Conference of Beginning Design Education (NCBDS) 2025. North Carolina State University.
UNESCO. (2024). Generation AI: Navigating the opportunities and risks of artificial intelligence in education. https://www.unesco.org/en/articles/generation-ai-navigating-opportunities-and-risks-artificialintelligence-education
Van Brummelen, J., & Lin, P. (2020). Engaging teachers to co-design integrated AI curriculum for K-12 classrooms [preprint]. arXiv (arXiv:2009.11100). http://arxiv.org/abs/2009.11100
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. JolmSteiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press. https://doi.org/10.2307/j.ctvjf9vz4
Wood, D., & Moss, S. H. (2024). Evaluating the impact of students’ generative AI use in educational contexts. Journal of Research in Innovative Teaching & Learning, 17(2), 152–167. https://doi.org/10.1108/JRIT06-2024-0151
Zaim, M., Arsyad, S., Waluyo, B., Ardi, H., Al Hafizh, M., Zakiyah, M., Syafitri, W., Nusi, A., & Hardiah, M. (2024). AI-powered EFL pedagogy: Integrating generative AI into university teaching preparation through UTAUT and activity theory. Computers and Education: Artificial Intelligence, 7. https://doi.org/10.1016/j.caeai.2024.100335