Dearq

Dearq | eISSN 2215-969X

Prototype of a self-sufficient biofabrication protocol for remote territories

No. 26 (2020-01-01)
  • Aníbal Fuentes Palacios
    Laboratorio de Biofabricación FADEU, Pontificia Universidad Católica de Chile agfuente@uc.cl
  • Carolina Pacheco Glen
    Laboratorio de Biofabricación FADEU, Pontificia Universidad Católica de Chile cpacheco1@uc.cl
  • Adriana Cabrera Galindez
    Matrix GmbH & Co. KG / Rhine-Waal University of Applied Sciences cabrera@matrix-gmbh.de
  • Alejandro Weiss Munchmeyer
    Laboratorio de Biomateriales de Valdivia, Chile alejandroweissm@gmail.com
  • María José Besoain Narvaez
    Laboratorio de Biomateriales de Valdivia. Chile info@labva.org

Abstract

The exploration of materiality is of fundamental importance for the processes of architecture and design. Due to the rapid development of digital manufacturing, prototyping processes today have made customized systems accessible to all audiences. However, not all parts of the planet have access to these technologies and standardized materials that are required by today’s industrial machinery and standards. Therefore, creating bio-manufacturing practices, for which local self-sufficiency and the use of local materials, is essential to create circular models. This fact underlines the importance of experimental materials research that connects exploring territories of all kinds of environments with self-understanding and responsible use of technologies in sensitive territories. In turn, this allows the self-sufficient emerging manufacturers to develop in extreme territories.

This work highlights some important points in the bio & eco-manufacturing approach by investigating the use of materials in one of the most southern place on the planet, Puerto Willams, Chile. The planning procedure was developed as a first approach to the territory as was the development of the samples of biocomposites and potential materials to work with in this area. As a result of our experience, this paper discusses both the technological aspects of bio-manufacturing and the social and ecological considerations involved. It also integrates cooperation within an interdisciplinary group of networked laboratories interested in disseminating and contributing to the bio-fabrication design movement in Chile.

Keywords: Bio-fabrication, biomaterials, self-sufficiency, remote territories, open source

References

Arenas, Federico, GastónAliaga, CarlaMarchant, and RafaelSanchez. 2005. El Espacio Geográfico Magallanico: Antecedentes Acerca de Su Estructura y Funcionamiento. http://www.ubiobio.cl/miweb/webfile/media/222/Espacio/2005/Articulo Arenas_et_al Tiempoyespacio.pdf.

Camere, Serena, and ElvinKarana. 2017. Growing Materials for Product Design. EKSIG 2017: Alive. Active. Adaptive, no. 1: 101–15. https://static1.squarespace.com/static/576953f3bebafb5359bfb528/t/5975e891cd39c316492d0e9c/1500899550482/EKSIG2017_Alive+Active+Adaptive_Proceedings_low+resolution2.pdf.

Emperaire, Joseph.2002. Los Nómades del Mar. Santiago: LOM.

Garmulewicz, Alysia.2015. 3D printing in the commons: knowledge and the nature of digital and physical resources. University of Oxford, UK.

Gusinde, Martín.1986. Los indios de Tierra del Fuego. (Vol 2). Buenos Aires: CAEA

IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA.

Meyers, Marc A, Albert Y MLin, YasuakiSeki, Po-yuChen, Bimal KKad, and SaraBodde. 2006. Structural Biological Composites, 35–41.

Meyers, Marc André, Po YuChen, Albert Yu MinLin, and YasuakiSeki. 2008. Biological Materials: Structure and Mechanical Properties. Progress in Materials Science53 (1): 1–206. https://doi.org/10.1016/j.pmatsci.2007.05.002.

Mironov, V., T.Trusk, V.Kasyanov, S.Little, R.Swaja, and R.Markwald. 2009. Biofabrication: A 21st Century Manufacturing Paradigm. Biofabrication1 (2). https://doi.org/10.1088/1758-5082/1/2/022001.

Myers, William.2012. BIO DESIGN, Nature, Science, Creativity. https://www.moma.org/momaorg/shared//pdfs/docs/publication_pdf/3167/BioDesign_PREVIEW.pdf?1349967238.

Ojeda, Jaime, RicardoRozzi, SebastiánRosenfeld, TamaraContadora, FranciscaMassardo, JavieraMalebrán, JuliaGonzález-Calderón, and AndrésMansilla. 2018. Interacciones Bioculturales Del Pueblo Yagán Con Las Macroalgas y Moluscos: Una Aproximación Desde La Filosofía Ambiental de Campo. Magallania (Punta Arenas)46 (1): 155–81. https://doi.org/10.4067/S0718-22442018000100155.

Rognoli, Valentina, MassimoBianchini, StefanoMaffei, and ElvinKarana. 2015. DIY Materials. Materials & Design86 (December): 692–702. https://doi.org/10.1016/j.matdes.2015.07.020.

Sanchez, Clément, HervéArribart, and Marie Madeleine GiraudGuille. 2005. Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems. Nature Materials4 (4): 277–88. https://doi.org/10.1038/nmat1339.

Vincent, Julian F.V.1982. Structural Biomaterials. Mathematical Biosciences. Vol. 68. https://doi.org/10.1016/0025-5564(84)90080-4.

Wegst, U. G K, and M. F.Ashby. 2004. The Mechanical Efficiency of Natural Materials. Philosophical Magazine84 (21): 2167–81. https://doi.org/10.1080/14786430410001680935.

Wegst, Ulrike G.K., HaoBai, EduardoSaiz, Antoni P.Tomsia, and Robert O.Ritchie. 2014. Bioinspired Structural Materials. Nature Materials14 (1): 23–36. https://doi.org/10.1038/nmat4089.

Ziegler, A. R., S. G.Bajwa, G. A.Holt, G.McIntyre, and D. S.Bajwa. 2016. Evaluation of Physico-Mechanical Properties of Mycelium Reinforced Green Biocomposites Made from Cellulosic Fibers. Applied Engineering in Agriculture32 (6): 931–38. https://doi.org/10.13031/aea.32.11830.