Autorregulación del aprendizaje: desenredando la relación entre cognición, metacognición y motivación
No. 1 (2021-07-01)Autor/a(es/as)
- 
								Antonio P. Gutierrez de Blume1Georgia Southern University, Statesboro, Estados Unidos (agutierrez@georgiasouthern.edu) ORCID ID: 0000-0001-6809-1728
Resumen
La teoría del aprendizaje autorregulado (AA) se compone de tres dimensiones principales: la cognición, la metacognición y la motivación. Si bien abundan las investigaciones sobre estos componentes de forma aislada, ningún estudio hasta la fecha ha explorado las relaciones de múltiples medidas de cada componente para obtener una mejor explicación del AA. Con este fin, el presente estudio exploró las relaciones entre varias medidas de cada componente del AA. Además, se examinó un modelo de predicción-mediación hipotético impulsado por la teoría que evaluó las relaciones temporales entre estas medidas. Estudiantes universitarios (N = 201) de Estados Unidos completaron medidas de valor de utilidad de la tarea, emociones académicas (esperanza, aburrimiento), medidas subjetivas (conocimiento de la cognición, regulación de la cognición) y objetivas (precisión del monitoreo) de metacognición, compromiso del estudiante (cognitivo, conductual), uso de estrategias cognitivas y rendimiento (vocabulario, probabilidades). Los resultados revelaron que había relaciones significativas entre las variables, excepto con el compromiso conductual, en la dirección teóricamente esperada. Además, hubo importantes efectos directos e indirectos entre las diversas medidas de los tres componentes del AA. Estos hallazgos son importantes porque integran las teorías del AA, la metacognición y la motivación, lo que ningún otro estudio hasta la fecha ha intentado hacer. Se discuten las implicaciones y recomendaciones para la teoría, la investigación y la práctica educativa.
Referencias
Ainley, M. (2006). Connecting with learning: Motivation, affect, and cognition. Educational Psychology Review, 18, 391-405. https://doi.org/10.1007/s10648-006-9033-0
Artino, A. R., Jr. (2009a). Online learning: Are subjective perceptions of instructional context related to academic success? Internet & Higher Education, 12 (3/4), 117-125. https://doi.org/10.1016/j.iheduc.2009.07.003
Artino, A. R., Jr. (2009b). Think, feel, act: Motivational and emotional influences on military students’ online academic success. Journal of Computing in Higher Education, 21, 146-166. https://doi.org/10.1007/s12528-009-9020-9
Artino, A. R., La Rochelle, J. S. & Durning, S. J. (2010). Second-year medical students’ motivational beliefs, emotions, and achievement. Medical Education, 44, 1203-1212. https://doi.org/10.1111/j.1365-2923.2010.03712.x
Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28, 117-148. https://doi.org/10.1207/s15326985ep2802_3
Bandura, A. (2006). Toward a psychology of human agency. Perspectives on Psychological Science, 1, 164-180. https://doi.org/10.1111/j.1745-6916.2006.00011.x
Barak, M. (2010). Motivating self-regulated learning in technology education. International Journal of Technology and Distance Education, 20, 381-401. https://doi.org/10.1007/s10798-009-9092-x
Barnett, J. E. & Hixon, J. E. (1997). The effects of grade level and subject on student test score predictions. The Journal of Educational Research, 90, 170-174. https://doi.org/10.1080/00220671.1997.10543773
Baron, M. & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173
Boekaerts, M. (1999). Self-regulated learning: Where we are today. International Journal of Educational Research, 31 (6), 445-457. https://doi.org/10.1016/S0883-0355(99)00014-2
Bol, L. & Hacker, D. J. (2001). A comparison of the effects of practice tests and traditional review on performance and calibration. The Journal of Experimental Education, 69, 133-151. https://doi.org/10.1080/00220970109600653
Bol, L., Hacker, D. J., O’Shea, P. & Allen, D. (2005). The influence of overt practice, achievement level, and explanatory style on calibration accuracy, and performance. The Journal of Experimental Education, 73, 269-290. https://doi.org/10.3200/JEXE.73.4.269-290
Brannick, M. T., Miles, D. E. & Kisamore, J. L. (2005). Calibration between student mastery and self-efficacy. Studies in Higher Education, 30, 473-483. https://doi.org/10.1080/03075070500160244
Brown, A. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. En F.Weinert & R.Kluwe (eds.), Metacognition, motivation, and understanding (pp. 65-116). Hillsdale, NJ: Lawrence Erlbaum.
Butler, D. L. & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical synthesis. Review of Educational Research, 65 (3), 245-281. https://doi.org/10.3102/00346543065003245
Byrne, B. M. (2006). Structural equation modeling with EQS. Lawrence Erlbaum Associates. https://us.sagepub.com/en-us/nam/structural-equation-modeling-with-eqs-and-eqswindows/book4319
Cui, G., Yao, M. & Zhang, X. (2017). The dampening effects of perceived teacher enthusiasm on class-related boredom: The mediating role of perceived autonomy support and task value. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2017.00400
Daniels, L. M., Stupnisky, R. H., Pekrun, R., Haynes, T. L., Perry, R. P. & Newall, N. E. (2009). A longitudinal analysis of achievement goals: From affective antecedents to emotional effects and achievement outcomes. Journal of Educational Psychology, 101, 948-963. https://doi.org/10.1037/a0016096
Deci, E. L. & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Baltimore, MD: Plenum. https://www.springer.com/gp/book/9780306420221
Eccles, J. S. & Wigfield, A. (1995). In the mind of the achiever: The structure of adolescents’ academic achievement-related beliefs and self-perceptions. Personality and Social Psychology Bulletin, 21, 215-225. https://doi.org/10.1177/0146167295213003
Entwistle, N. J. & Ramsden, P. (1982). Understanding student learning. British Journal of Educational Studies, 32 (3), 284-286. https://doi.org/10.2307/3121589
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of psychological inquiry. American Psychologist, 34, 906-911. https://doi.org/10.1037/0003-066X.34.10.906
Gasiewski, J. A., Eagan, M. K., Garcia, G. A., Hurtado, S. & Chang, M. J. (2012). From gatekeeping to engagement: A multi-contextual, mixed method study of student academic engagement in introductory STEM courses. Research in Higher Education, 53, 229-261. https://doi.org/10.1007/s11162-011-9247-y
Glenberg, A. M. & Epstein, W. (1985). Calibration of comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 702-718. https://doi.org/10.1037/0278-7393.11.1-4.702
Glenberg, A. M., Sanocki, T., Epstein, W. & Morris, C. (1987). Enhancing calibration of comprehension. Journal of Experimental Psychology: General, 116, 119-136. https://doi.org/10.1037/0096-3445.116.2.119
Goetz, T., Nett, U. E., Martiny, S. E., Hall, N. C., Pekrun, R., Dettmers, S. & Trautwein, U. (2012). Students’ emotions during homework: Structures, self-concept antecedents, and achievement outcomes. Learning and Individual Difference, 22 (2), 225-234. https://doi.org/10.1016/j.lindif.2011.04.006
Greene, B. A. & Miller, R. B. (1996). Influences on achievement: Goals, perceived ability, and cognitive engagement. Contemporary Educational Psychology, 21 (2), 181-192. https://doi.org/10.1006/ceps.1996.0015
Greene, B. A., Miller, R. B., Crowson, H. M., Duke, B. L. & Akey, K. L. (2004). Predicting high school students’ cognitive engagement and achievement: Contributions of classroom perceptions and motivation. Contemporary Educational Psychology, 29, 462-482. https://doi.org/10.1016/j.cedpsych.2004.01.006
Grimes, P. W. (2002). The overconfident principles of economics students: An examination of metacognitive skill. Journal of Economic Education, 1, 15-30. https://doi.org/10.1080/00220480209596121
Gutierrez, A. P. & Schraw, G. (2015). Effects of strategy training and incentives on students’ performance, confidence, and calibration. The Journal of Experimental Education, 83, 386-404. https://doi.org/10.1080/00220973.2014.907230
Gutierrez, A. P., Schraw, G., Kuch, F. & Richmond, A. S. (2016). A two-process model of metacognitive monitoring: Evidence for distinct accuracy and error factors. Learning and Instruction, 44, 1-10. https://doi.org/10.1016/j.learninstruc.2016.02.006
Gutierrez de Blume, A. P., Schraw, G., Kuch, F. & Richmond, A. S. (en prensa). General accuracy and general error factors in metacognitive monitoring and the role of time in predicting metacognitive judgments. CES Psicología.
Gutierrez de Blume, A. P. (2017). The effects of strategy training and an extrinsic incentive on fourth- and fifth-grade students’ performance, confidence, and calibration accuracy. Cogent Education, 4, 1-17. https://doi.org/10.1080/2331186X.2017.1314652
Hacker, D. J., Bol, L. & Bahbahani, K. (2008). Explaining calibration accuracy in classroom contexts: The effects of incentives, reflection, and explanatory style. Metacognition Learning, 3, 101-121. https://doi.org/10.1007/s11409-008-9021-5
Kardash, K. C. & Amlund, J. T. (1991). Self-reported learning strategies and learning from expository text. Contemporary Educational Psychology, 16 (2), 117-138. https://doi.org/10.1016/0361-476X(91)90032-G
Kline, R. (2005). Principles and practice of structural equation modeling (pp. 165-207). NewYork, NY: Guilford Press. https://www.guilford.com/books/Principles-and-Practice-of-Structural-Equation-Modeling/Rex-Kline/9781462523344
Kruger, J. & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77, 1121-1134.
Lazowski, R. A. & Hulleman, C. S. (2016). Motivation interventions in education: A meta-analytic review. Review of Educational Research, 86 (2), 602-640. https://doi.org/10.3102/0034654315617832
Linnenbrink-Garcia, L., Rogat, T. & Koskey, K. K. (2011). Affect and engagement during small group instruction. Contemporary Educational Psychology, 36 (1), 13-24. https://doi.org/10.1016/j.cedpsych.2010.09.001
Marchand, G. C. & Gutierrez, A. P. (2012). The role of emotion in the learning process: Comparisons between online and face-to-face learning settings. Internet and Higher Education, 15, 150-160. https://doi.org/10.1016/j.iheduc.2011.10.001
Marchand, G. C. & Gutierrez, A. P. (2017). Processes involving perceived instructional support, task value, and engagement in graduate education. The Journal of Experimental Education, 85, 87-106. https://doi.org/10.1080/00220973.2015.1107522
Marshalek, B., Lohman, D. F. & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7, 107-127. https://doi.org/10.1016/0160-2896(83)90023-5
Miller, R. B., Greene, B. A., Montalvo, G. P., Ravindran, B. & Nichols, J. D. (1996). Engagement in academic work: The role of learning goals, future consequences, pleasing others, and perceived ability. Contemporary Educational Psychology, 21 (4), 388-422. https://doi.org/10.1006/ceps.1996.0028
Ouano, J. A. (2011). Motivational antecedents to academic emotions in Filipino college students. The Asia-Pacific Education Researcher, 20, 137-142. https://ejournals.ph/article.php?id=4083
Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in Psychology, 8, 1-28. https://doi.org/10.3389/fpsyg.2017.00422
Pekrun, R. (2005). Progress and open problems in educational emotion research. Learning and Instruction, 15 (5), 497-506. https://doi.org/10.1016/j.learninstruc.2005.07.014
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315-341. https://doi.org/10.1007/s10648-006-9029-9
Pekrun, R., Elliot, A. J. & Maier, M. A. (2009). Achievement goals and achievement emotions: Testing a model of their joint relations with academic performance. Journal of Educational Psychology, 101, 115-135. https://doi.org/10.1037/a0013383
Pekrun, R., Goetz, T. & Perry, R. P. (2005). Achievement emotions questionnaire (AEQ): User’s manual. Munich, Germany: University of Munich, Department of Psychology.
Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P. & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36, 36-48. https://doi.org/10.1016/j.cedpsych.2010.10.002
Pekrun, R., Goetz, T., Titz, W. & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37, 91-105. https://doi.org/10.1207/S15326985EP3702_4
Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International Journal of Educational Research, 31, 459-470. https://doi.org/10.1016/S0883-0355(99)00015-4
Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16, 385-407. https://doi.org/10.1007/s10648-004-0006-x
Pintrich, P. R. & de Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33-40. https://doi.org/10.1037/0022-0663.82.1.33
Reeve, J., Jang, H., Hardre, P. & Omura, M. (2002). Providing a rationale in an autonomy-supportive way as a strategy to motivate others during an uninteresting activity. Motivation and Emotion, 26, 183-207. https://doi.org/10.1023/A:1021711629417
Rozell, E. J. & Gardner, W. (2000). Cognitive, motivation, and affective processes associated with computer-related performance: A path analysis. Computers in Human Behavior, 16 (2), 199-222. https://doi.org/10.1016/S0747-5632(99)00054-0
Ryan, R. & Deci, E. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55, 68-78. https://doi.org/10.1037/0003-066X.55.1.68
Schraw, G. (2009). A conceptual analysis of five measures of metacognitive monitoring. Metacognition Learning, 4, 33-45. https://doi.org/10.1007/s11409-008-9031-3
Schraw, G., Crippen, K. J. & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111-139. https://doi.org/10.1007/s11165-005-3917-8
Schraw, G. & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19, 460-475. https://doi.org/10.1006/ceps.1994.1033
Skinner, E. A., Kindermann, T. A. & Furrer, C. J. (2008). A motivational perspective on engagement and disaffection: Conceptualization and assessment of children’s behavioral and emotional participation in academic activities in the classroom. Educational and Psychological Measurement, 69, 493-525. https://doi.org/10.1177/0013164408323233
Skinner, E. A. & Pitzer, J. R. (2012). Developmental dynamics of student engagement, coping, and everyday resilience. En S. L.Christenson, A. L.Reschly & C.Wylie (eds.), Handbook of research on student engagement (pp. 21-44). Boston, MA: Springer. https://doi.org/10.1007/978-1-4614-2018-7_2
Soto, C., Gutierrez de Blume, A. P., Carrasco Bernal, M. A. & Contreras Castro, M. A. (2020). The role of meta-cognitive cues on the comprehension of proficient and poor readers. Journal of Research in Reading, 43 (2), 272-289. https://doi.org/10.1111/1467-9817.12303
Tabachnick, B. G. & Fidell, L. S. (2011). Cleaning up your act: Screening data prior to analysis. Using multivariate statistics (pp. 60-116). Pearson. https://www.pearson.com/us/higher-education/program/Tabachnick-Using-Multivariate-Statistics-6th-Edition/PGM332849.html
Thiede, H. L. & Leboe, J. P. (2009). Illusions of competence for phonetically, orthographically, and semantically similar word pairs. Canadian Journal of Experimental Psychology, 63 (4), 294-302. https://doi.org/10.1037/a0015717
Walczyk, J. J. & Hall, V. C. (1989). Effects of examples and embedded questions on the accuracy of comprehension self-assessments. Journal of Educational Psychology, 81, 435-437. https://doi.org/10.1037/0022-0663.81.3.435
Wang, M.-T. & Eccles, J. S. (2013). School context, achievement motivation, and academic engagement: A longitudinal study of school engagement using a multidimensional perspective. Learning and Instruction, 28, 12-23. https://doi.org/10.1016/j.learninstruc.2013.04.002
Wang, M. T. & Holcombe, R. (2010). Adolescents’ perceptions of school environment, engagement, and academic achievement in middle school. American Educational Research Journal, 47 (3), 633-662. https://doi.org/10.3102/0002831209361209
Werts, C. E., Linn, R. L. & Joreskog, K. G. (1974). Intraclass reliability estimates: Testing structural assumptions. Educational and Psychological Measurement, 34 (1), 25-33. https://doi.org/10.1177/001316447403400104
Wigfield, A. & Eccles, J. S. (2002). Expectancy value theory of achievement motivation. Contemporary Educational Psychology, 25, 67-81. https://doi.org/10.1006/ceps.1999.1015
Winne, P. H. & Jamieson-Noel, D. L. (2002). Exploring students’ calibration of self-reports about study tactics and achievement. Contemporary Educational Psychology, 27, 551-572. https://doi.org/10.1016/S0361-476X(02)00006-1
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. En M.Boekaerts, P. R.Pintrich & M.Zeidner (eds.), Handbook of self-regulation (pp. 13-39). Cambridge, MA: Academic Press https://doi.org/10.1016/B978-012109890-2/50031-7
