Artificial Intelligence in Mathematics Education: Future Teachers’ Perceptions of Expectations, Practices, and Challenges
No. 2 (2025-05-31)Author(s)
-
Robinson Junior Conde-CarmonaUniversidad del AtlánticoORCID iD: https://orcid.org/0000-0002-7421-1754
-
Iván Andrés Padilla-EscorciaUniversidad del AtlánticoORCID iD: https://orcid.org/0000-0003-1210-3712
Abstract
This study examines the perceptions of future mathematics teachers regarding the integration of artificial intelligence (AI) in their professional practice. Using a phenomenological-hermeneutic design, expectations, anticipated practices, and perceived challenges were investigated. Thirty pre-service teachers from a public university in Barranquilla, Colombia participated. Data were collected through semi-structured interviews, focus groups, reflective journals, and field observations. Thematic analysis revealed enthusiasm for AI's potential to personalize learning and visualize abstract concepts, alongside concerns about equity, privacy, and technological dependence. Participants envisioned AI as a "copilot" in teaching, emphasizing the need for comprehensive AI training. The results suggest the need for a balanced approach in teacher training that addresses both the opportunities and challenges of AI in mathematics education.
References
Baker, T., Smith, L. y Anissa, N. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta. https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf
Braun, V. y Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 11(4), 589-597. https://doi.org/10.1080/2159676X.2019.1628806
Bush, J. B. (2021). Software-based intervention with digital manipulatives to support student conceptual understandings of fractions. British Journal of Educational Technology, 52(6), 2299-2318. https://doi.org/10.1111/bjet.13139
Charmaz, K. C. (2014). Constructing grounded theory (2.a ed.). Sage Publications.
Chen, L., Chen, P. y Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
Chen, X., Xie, H., Zou, D. y Hwang, G.-J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 100002. https://doi.org/10.1016/j.caeai.2020.100002
Chu, H.-C., Chen, J.-M., Kuo, F.-R. y Yang, S.-M. (2021). Development of an adaptive game-based diagnostic and remedial learning system based on the concept-effect model for improving learning achievements in mathematics. Educational Technology & Society, 24(4), 36-53. https://www.jstor.org/stable/48629243
Cope, B., Kalantzis, M. y Searsmith, D. (2020). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229-1245. https://doi.org/10.1080/00131857.2020.1728732
Creswell, J. W. y Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches (4.a ed.). Sage Publications.
Denzin, N. K. (2017). The research act: A theoretical introduction to sociological methods. Routledge. https://doi.org/10.4324/9781315134543
Duzhin, F. y Gustafsson, A. (2018). Machine learning-based app for self-evaluation of teacher-specific instructional style and tools. Education Sciences, 8(1), 7-21. https://doi.org/10.3390/educsci8010007
Fanchamps, N. L. J. A., Slangen, L., Hennissen, P. y Specht, M. (2021). The influence of SRA programming on algorithmic thinking and self-efficacy using Lego robotics in two types of instruction. International Journal of Technology and Design Education, 31, 203-222. https://doi.org/10.1007/s10798-019-09559-9
Fang, Y., Ren, Z., Hu, X. y Graesser, A. C. (2019). A meta-analysis of the effectiveness of ALEKS on learning. Educational Psychology, 39(10), 1278-1292. https://doi.org/10.1080/01443410.2018.1495829
Guan, C., Mou, J. y Jiang, Z. (2020). Artificial intelligence innovation in education: A twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134-147. https://doi.org/10.1016/j.ijis.2020.09.001
Gulz, A., Londos, L. y Haake, M. (2020). Preschoolers’ understanding of a teachable agent-based game
in early mathematics as reflected in their gaze behaviors–An experimental study. International
Journal of Artificial Intelligence in Education, 30(7), 38-73. https://doi.org/10.1007/s40593-020-00193-4
Harper, F., Stumbo, Z. y Kim, N. (2021). When robots invade the neighborhood: Learning to teach preK-5 mathematics leveraging both technology and community knowledge. Contemporary Issues in Technology and Teacher Education, 21(1), 19-52. https://citejournal.org/volume-21/issue-1-21/mathematics/when-robots-invade-the-neighborhoodlearning-to-teach-prek-5-mathematics-leveraging-both-technology-and-community-knowledge
Hasanein, H. A. A. y Abu-Naser, S. S. (2018). Developing education in Israa University using intelligent tutoring system. International Journal of Academic Pedagogical Research, 2(5), 1-16.
Hwang, G.-J., Xie, H., Wah, B.-W. y Gašević, D. (2020). Vision, challenges, roles and research issues of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001
Hwang, S. (2022). Examining the effects of artificial intelligence on elementary students’ mathematics achievement: A meta-analysis. Sustainability, 14(20), 13185. https://doi.org/10.3390/su142013185
Jang, Y., Choi, S. y Kim, H. (2022). Development and validation of an instrument to measure undergraduate students’ attitudes toward the ethics of artificial intelligence (AT-EAI) and analysis of its difference by gender and experience of AI education. Education and Information Technologies, 27(8), 11635-11667. https://doi.org/10.1007/s10639-022-11086-5
Kiili, K. y Tuomi, P. (2019). Teaching educational game design: Expanding the game design mindset with instructional aspects. En A. Liapis, G. N. Yannakakis, M. Gentile, M. Ninaus (eds.), Games and learning alliance: 8th International Conference, GALA 2019, Athens, Greece, November 27-29, 2019, proceedings (pp. 103-113). Springer International Publishing.
Kim, D. H. (2023). AI curriculum design for Korea K-12 AI education through analyzing AI education curriculum. International Journal of Recent Technology and Engineering, 12(3), 72-81. https://doi.org/10.35940/ijrte.C7173.0312323
Mahmoud, A. M. (2020). Artificial intelligence applications: An introduction to the development of education in light of the challenges of the corona virus (COVID-19) pandemic. International Journal of Research in Educational Sciences, 3(4), 171-224. https://www.iafh.net/index.php/IJRES/article/view/240
Méndez-Parra, C. y Conde-Carmona, R. J. (2025). Integración del enfoque STEAM y la realidad aumentada en la enseñanza de la traslación de figuras geométricas. Revista Virtual Universidad Católica del Norte, (74), 69-92. https://doi.org/10.35575/rvucn.n74a4
Mousavinasab, E., Zarifsanaiey, N., R. Niakan Kalhori, S., Rakhshan, M., Keikha, L. y Ghazi Saeedi, M. (2021). Intelligent tutoring systems: A systematic review of characteristics, applications, and evaluation methods. Interactive Learning Environments, 29(1), 142-163.
Nguyen, N. D. (2023). Exploring the role of AI in education. London Journal of Social Sciences, (6), 84-95. https://doi.org/10.31039/ljss.2023.6.108
Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (Unesco). (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. https://unesdoc.unesco.org/ark:/48223/pf0000366994.locale=es
Padilla Escorcia, I. A. y Conde-Carmona, R. J. (2020). Uso y formación en TIC en profesores de matemáticas: un análisis cualitativo. Revista Virtual Universidad Católica del Norte, (60), 116-136. https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/1166
Panqueban, D. y Huincahue, J. (2024). Inteligencia artificial en educación matemática: una revisión sistemática. Uniciencia, 38(1), 1-17. http://dx.doi.org/10.15359/ru.38-1.20
Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice (4.a ed.). Sage Publications.
Rasheed, N. M. y Tashtoush, M. A. (2023). The impact of Cognitive Training Program for Children (CTPC) to development the mathematical conceptual and achievement. Journal of Higher Education Theory and Practice, 23(10), 218-234. https://doi.org/10.33423/jhetp.v23i10.6196
Shin, W.-S. y Shin, D.-H. (2020). A study on the application of artificial intelligence in elementary science education. Journal of Korean Elementary Science Education, 39(1), 117-132. https://doi.org/10.15267/keses.2020.39.1.117
Shirawia, N., AlAli, R., Wardat, Y., Tashtoush, M. A., Saleh, S. y Helali, M. (2023). Logical mathematical intelligence and its impact on the academic achievement for pre-service math teachers. Journal of Educational and Social Research, 13(6), 242-257. https://doi.org/10.36941/jesr-2023-0161
Tashtoush, M. (2019). Weakly c–normal and cs–normal subgroups of finite groups. Jordan Journal of Mathematics and Statistics, 1(2), 123-132.
Van Manen, M. (2016). Phenomenology of practice: Meaning-giving methods in phenomenological research and writing. Routledge. https://doi.org/10.4324/9781315422657
Wang, S., Yu, H., Hu, X. y Li, J. (2020). Participant or spector? Comprehending the willingness of faculty to use intelligent tutoring systems in the artificial intelligence era. British Journal of Educational Technology, 51(5), 1657-1673. https://doi.org/10.1111/bjet.12998