El papel de los food system living labs en el establecimiento de sistemas agroalimentarios sostenibles y resilientes en Colombia
No. 10 (29-11-2024)Autor/a(es/as)
-
Yeimy Alejandra MontenegroUniversidad de los Andes (Colombia)
-
Jhon Kennedy TuquerresUniversidad de los Andes (Colombia)
-
Angelis Marbello SantrichUniversidad de los Andes (Colombia)
-
Martha E. Cárdenas ToquicaUniversidad de los Andes (Colombia)
-
Maria Fernanda Mideros BastidasUniversidad de los Andes (Colombia)
Resumen
Los sistemas agroalimentarios juegan un papel crucial en la seguridad alimentaria, la sostenibilidad y la equidad social. En un contexto global marcado por desafíos como el cambio climático y el crecimiento poblacional, es esencial proponer nuevas metodologías que permitan entender las complejas interconexiones entre los diferentes actores y actividades del sistema alimentario. En este contexto, los food system living labs (FSLL) emergen como una estrategia efectiva para generar soluciones alternativas que permitan una transición eficiente a sistemas agroalimentarios resilientes y sostenibles. Esta revisión explora el concepto y relevancia de los food system living labs, con un enfoque en su importancia, las innovaciones implementadas, los impactos económicos, sociales y ambientales que generan, así como los desafíos y estrategias exitosas en su implementación. Además, se analizan cuatro aspectos clave para su éxito: i) plataformas de innovación colaborativa; ii) innovación para la sostenibilidad; iii) experimentación en entornos reales; y iv) desarrollo y adopción de nuevas tecnologías. Todo ello en el marco de la participación multisectorial y los procesos de cocreación con actores locales en contextos rurales y urbanos. Finalmente, se propone un modelo para implementación en Colombia.
Referencias
Alamanos, A., Koundouri, P., Papadaki, L., Pliakou, T., y Toli, E. (2022). Water for Tomorrow: A Living Lab on the Creation of the Science-Policy-Stakeholder Interface. Water, 14(18). https://doi.org/10.3390/w14182879
Alexandrova-Stefanova, N., Nosarzewski, K., Mroczek, Z., Audouin, S., Djamen, P., Kolos, N., y Wan, J. (2023). Harvesting change: Harnessing emerging technologies and innovations for agrifood system transformation – Global foresight synthesis report. Roma. FAO & Cirad. https://doi.org/10.4060/CC8498EN
Bagoudou Labo, O., Zhegu, M., y Merveille, N. (2024). Cultivating Sustainability: Quebec’s Living Labs as Ecological Catalysts. Sustainability, 16(5). https://doi.org/10.3390/su16051887
Bajgier, S. M., Maragah, H. D., Saccucci, M. S., Verzilli, A., y Prybutok, V. R. (1991). Introducing Students to Community Operations Research by Using a City Neighborhood As A Living Laboratory. Operations research, 39(5), 701–709. https://doi.org/10.1287/OPRE.39.5.701
Bellon-Maurel, V., Piot-Lepetit, I., Lachia, N., y Tisseyre, B. (2023). Digital agriculture in Europe and in France: which organisations can boost adoption levels? Crop and Pasture Science, 74(6), 573–585. https://doi.org/10.1071/CP22065
Béné, C., Oosterveer, P., Lamotte, L., Brouwer, I. D., de Haan, S., Prager, S. D., Talsma, E. F., y Khoury, C. K. (2019). When food systems meet sustainability – Current narratives and implications for actions. World Development, 113, 116–130. https://doi.org/10.1016/J.WORLDDEV.2018.08.011
Berberi, A., Beaudoin, C., McPhee, C., Guay, J., Bronson, K., y Nguyen, V. M. (2023). Enablers, barriers, and future considerations for living lab effectiveness in environmental and agricultural sustainability transitions: a review of studies evaluating living labs. Local Environment, 1–19. https://doi.org/10.1080/13549839.2023.2238750
Berkemeier, A., Kühnel, L., Dürigen, D., Hoffmann, H., Zeidler, H., Bullinger, A. C., y Wagenführ, A. (2024). SAMSax—An Innovative Living Lab for the Advancement of a Circular Economy through Additive Manufacturing Technologies. Sustainability, 16(2). https://doi.org/10.3390/su16020823
Birkle, C., Pendlebury, D. A., Schnell, J., y Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363–376. https://doi.org/10.1162/qss_a_00018
Bouma, J. (2022). Transforming living labs into lighthouses: a promising policy to achieve land- related sustainable development. SOIL, 8(2), 751–759. https://doi.org/10.5194/soil-8-751- 2022
Bouma, J., de Haan, J., y Dekkers, M. (2022). Exploring Operational Procedures to Assess Ecosystem Services at Farm Level, including the Role of Soil Health. Soil Systems, 6(2). https://doi.org/10.3390/soilsystems6020034
Bouwma, I., Wigboldus, S., Potters, J., Selnes, T., van Rooij, S., y Westerink, J. (2022). Sustainability Transitions and the Contribution of Living Labs: A Framework to Assess Collective Capabilities and Contextual Performance. Sustainability, 14(23). https://doi.org/10.3390/su142315628
Bronson, K., Devkota, R., y Nguyen, V. (2021). Moving toward Generalizability? A Scoping Review on Measuring the Impact of Living Labs. Sustainability, 13(2). https://doi.org/10.3390/su13020502
Busse, M., Zscheischler, J., Zoll, F., Rogga, S., y Siebert, R. (2023). Co-design approaches in land use related sustainability science – A systematic review. Land Use Policy, 129, 106623. https://doi.org/10.1016/J.LANDUSEPOL.2023.106623
Calafat-Marzal, C., Sánchez-García, M., Marti, L., y Puertas, R. (2023). Agri-food 4.0: Drivers and links to innovation and eco-innovation. Computers and Electronics in Agriculture, 207, 107700. https://doi.org/10.1016/J.COMPAG.2023.107700
Carr, K., Kendal, R. L., y Flynn, E. G. (2016). Eureka!: What Is Innovation, How Does It Develop, and Who Does It? Child Development, 87(5), 1505–1519. https://doi.org/10.1111/CDEV.12549
CGIAR (Grupo Consultivo para la Investigación Agrícola Internacional) (2023). Empowering Sustainable Transitions: The Living Lab for People in Colombia. https://www.cgiar.org/news-events/news/empowering-sustainable-transitions-the-living-lab-for-people-in-colombia/
Ciaccia, C., Testani, E., Fiore, A., Iocola, I., Di Pierro, M., Mele, G., Ferlito, F., Cutuli, M., Montemurro, F., Farina, R., Ceccarelli, D., Persiani, A., Canali, S., y Diacono, M. (2021). Organic Agroforestry Long-Term Field Experiment Designing Trough Actors’ Knowledge towards Food System Sustainability. Sustainability, 13(10). https://doi.org/10.3390/su13105532
Clarivate (2024). Web of Science platform. https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
DANE. (2019). Encuesta Nacional Agropecuaria (ENA) 2019. https://microdatos.dane.gov.co/index.php/catalog/749
Dogan, E., Cuomo, F., y Battisti, L. (2023). Reviving Urban Greening in Post-Industrial Landscapes: The Case of Turin. Sustainability, 15(17). https://doi.org/10.3390/su151712760
Dorr, E., Koegler, M., Gabrielle, B., y Aubry, C. (2021). Life cycle assessment of a circular, urban mushroom farm. Journal of Cleaner Production, 288, 125668. https://doi.org/10.1016/J.JCLEPRO.2020.125668
Drewnowski, A. (2022). Food insecurity has economic root causes. Nature Food, 3(8), 555–556. https://doi.org/10.1038/s43016-022-00577-w
Dubeuf, J. P., Biehlmann, F., Lorton, R., Sorba, J. M., y Valenti, M. (2023). Assessing the operational perspectives of agrosilvopastoralism in the Mediterranean Region: Learnings from observations in Corsica. Small Ruminant Research, 229, 107131. https://doi.org/10.1016/J.SMALLRUMRES.2023.107131
ENoLL (2024). European Network of Living Labs, Living Labs network European Network of Living Labs. https://enoll.org/
Erisman, J. C., Feenstra, L. D., Broerse, J. E. W., Grijseels, M., Gudek, L., De Hoop, E., Jones, T. S., Loeber, A. M. C., Luger, J., Van Der Meij, M. G., Prūse, B., Regeer, B. J., Saidi, T., Schrammeijer, B. A., Zeidan, H., Zuiderent-Jerak, T., y Kok, K. P. W. (2024). Labbing for sustainability transformations: Learning about challenges and strategies for impact Labbing for impact. https://doi.org/10.14512/gaia.33.S1.10
European Commission (2008). Living Labs for user-driven open innovation – An overview of the Living Labs methodology, activities and achievements – January 2009. https://data.europa.eu/doi/10.2759/34481
FAO (2013). Agroindustrias para el desarrollo. https://www.fao.org/family-farming/detail/es/c/292291/
FAO (2017). The State of Food Security and Nutrition in the World 2022: Repurposing food and agricultural policies to make healthy diets more affordable. FAO. https://openknowledge.fao.org/server/api/core/bitstreams/4ac1286e-eef3-4f1d-b5bd-d92f5d1ce738/content
FAO (2019a). The State of Food and Agriculture 2019: Moving forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/server/api/core/bitstreams/b620989c-407b-4caf-a152-f790f55fec71/content
FAO (2019b). Simposio Internacional Sobre Innovación Agrícola en favor de los Agricultores Familiares. Disponible en https://www.fao.org/about/meetings/agricultural-innovation-family-farmers- symposium/about/es/
FAO (2022). Soil degradation threatens food, medicine and the climate - WATCH CNBC recently released video | Global Soil Partnership | Food and Agriculture Organization of the United Nations. Disponible en https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/1539317/
FAO (2023, marzo 21). Water scarcity means less water for agriculture production, which in turn means less food available, threatening food security and nutrition. FAO. https://www.fao.org/newsroom/detail/water-scarcity-means-less-water-for-agriculture-production-which-in-turn-means-less-food-available-threatening-food-security-and-nutrition/en
FAO Colombia (2019). Alimentación: pasando de pérdidas a soluciones. Disponible en https://www.fao.org/colombia/noticias/detail-events/en/c/1238132/
Frick-Trzebitzky, F., Kluge, T., Stegemann, S., y Zimmermann, M. (2022). Capacity development for water reuse in in-formal partnerships in northern Namibia. Frontiers in Water, 4, 906407. https://doi.org/10.3389/FRWA.2022.906407/BIBTEX
Gamache, G., Anglade, J., Feche, R., Barataud, F., Mignolet, C., y Coquil, X. (2020). Can living labs offer a pathway to support local agri-food sustainability transitions? Environmental Innovation and Societal Transitions, 37, 93–107. https://doi.org/10.1016/J.EIST.2020.08.002
García-Llorente, M., Pérez-Ramírez, I., de la Portilla, C., Haro, C., y Benito, A. (2019). Agroecological Strategies for Reactivating the Agrarian Sector: The Case of Agrolab in Madrid. Sustainability, 11(4). https://doi.org/10.3390/su11041181
Gardezi, M., Abuayyash, H., Adler, P. R., Alvez, J. P., Anjum, R., Badireddy, A. R., Brugler, S., Carcamo, P., Clay, D., Dadkhah, A., Emery, M., Faulkner, J. W., Joshi, B., Joshi, D. R., Khan, A. H., Koliba, C., Kumari, S., McMaine, J., Merrill, S., … Zia, A. (2024). The role of living labs in cultivating inclusive and responsible innovation in precision agriculture. Agricultural Systems, 216, 103908. https://doi.org/10.1016/J.AGSY.2024.103908
Hendriks, S., Soussana, J. F., Cole, M., Kambugu, A., y Zilberman, D. (2023). Ensuring access to safe and nutritious food for all through the transformation of food systems. En J. von Braun, K. Afsana, L. Fresco, y M. Hassan (Eds.), Science and innovations for food systems transformation (pp. 65–84). Springer. https://doi.org/10.1007/978-3-031-15703-5_4
High Level Panel of Experts on Food Security and Nutrition [HLPE-FSN] (2023). Executive summary of the report Reducing inequalities for food security and nutrition. Roma, CFS HLPE-FSN.
Hossain, M., Leminen, S., y Westerlund, M. (2019). A systematic review of living lab literature. Journal of Cleaner Production, 213, 976–988. https://doi.org/10.1016/J.JCLEPRO.2018.12.257
Hussain, A., Fatima, H. S., Zia, S. M., Hasan, S., Khurram, M., Stricker, D., y Afzal, M. Z. (2023). Development of Cost-Effective and Easily Replicable Robust Weeding Machine—Premiering Precision Agriculture in Pakistan. Machines, 11(2). https://doi.org/10.3390/machines11020287
Hvitsand, C., Raanaas, R. K., Gjøtterud, S., y Nicolaysen, A. M. (2022). Establishing an Agri-food living lab for sustainability transitions: Methodological insight from a case of strengthening the niche of organic vegetables in the Vestfold region in Norway. Agricultural Systems, 199, 103403. https://doi.org/10.1016/J.AGSY.2022.103403
Jie, C., Jing-zhang, C., Man-zhi, T., y Zi-tong, G. (2002). Soil degradation: a global problem endangering sustainable development. Journal of Geographical Sciences, 12(2), 243–252. https://doi.org/10.1007/BF02837480
Kahn, K. B. (2018). Understanding innovation. Business Horizons, 61(3), 453–460. https://doi.org/10.1016/J.BUSHOR.2018.01.011
Klebl, F., Walthall, B., y Vicente-Vicente, J. (2022). Planning for sustainable food communities: An optimal spatial allocation study of food hubs considering the 15-min city concept—The case of Lebens Mittel Punkte in Berlin. Frontiers in Sustainable Food Systems, 6, 913412. https://doi.org/10.3389/FSUFS.2022.913412/BIBTEX
Kumar, L., Chhogyel, N., Gopalakrishnan, T., Hasan, M. K., Jayasinghe, S. L., Kariyawasam, C. S., Kogo, B. K., y Ratnayake, S. (2022). Climate change and future of agri-food production. Future Foods: Global Trends, Opportunities, and Sustainability Challenges, 49–79. https://doi.org/10.1016/B978-0-323-91001-9.00009-8
Lamine, C., Renting, H., Rossi, A., Wiskerke, J. S. C., y Brunori, G. (2012). Agri-food systems and territorial development: Innovations, new dynamics and changing governance mechanisms. En I. Darnhofer, D. Gibbon, y B. Dedieu (Eds.), Farming systems research into the 21st century: The new dynamic (pp. 229–256). Springer. https://doi.org/10.1007/978-94-007-4503-2_11
Lapointe, D., & Guimont, D. (2015). Open innovation practices adopted by private stakeholders: Perspectives for living labs. Info, 17(4), 67–80. https://doi.org/10.1108/INFO-01-2015-0003
Le Coq, J.-F., Grisa, C., Guéneau, S., y Niederle, P. (2021). Políticas Públicas y Sistemas Alimentarios en América Latina. E-papers Serviços Editoriais Ltda.
Leminen, S., y Westerlund, M. (2019). Living labs: From scattered initiatives to a global movement. Creativity and Innovation Management, 28(2), 250–264. https://doi.org/10.1111/CAIM.12310
Lianu, C., Simion, V.-E., Urdes, L., Bucea-Manea-Țoniș, R., Radulescu, I. G., y Lianu, C. (2023). Agroecological Approaches in the Context of Innovation Hubs. Sustainability, 15(5). https://doi.org/10.3390/su15054335
Lie, R., van Paassen, A., y Witteveen, L. (2023). Living labs and innovation platforms: A literature review. Penang, Malaysia: WorldFish. Program Report. Disponible en https://cgspace.cgiar.org/server/api/core/bitstreams/14dd9949-4ad5-4cb9-bf02-924196c7f1ef/content
Luján Soto, R., de Vente, J., y Cuéllar Padilla, M. (2021). Learning from farmers’ experiences with participatory monitoring and evaluation of regenerative agriculture based on visual soil assessment. Journal of Rural Studies, 88, 192–204. https://doi.org/10.1016/J.JRURSTUD.2021.10.017
Lupp, G., Zingraff-Hamed, A., Huang, J. J., Oen, A., y Pauleit, S. (2021). Living Labs—A Concept for Co-Designing Nature-Based Solutions. Sustainability, 13(1). https://doi.org/10.3390/su13010188
Massari, S., Galli, F., Mattioni, D., y Chiffoleau, Y. (2023). Co-creativity in Living Labs: fostering creativity in co-creation processes to transform food systems. Journal of Science Communication, 22(3), A03. https://doi.org/10.22323/2.22030203
Mbow, C., Rosenzweig, C., Barioni, L. G., Benton, T. G., Herrero, M., Krishnapillai, M., Liwenga, E., Pradhan, P., Rivera-Ferre, M. G., Sapkota, T., Tubiello, F. N., & Xu, Y. (2019). Food security. En P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley (Eds.), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (pp. 437-511). Cambridge University Press. https://doi.org/10.1017/9781009157988.007
McPhee, C., Bancerz, M., Mambrini-Doudet, M., Chrétien, F., Huyghe, C., y Gracia-Garza, J. (2021). The Defining Characteristics of Agroecosystem Living Labs. Sustainability, 13(4). https://doi.org/10.3390/su13041718
Midwood, A. J., Hannam, K. D., Forge, T. A., Neilsen, D., Emde, D., y Jones, M. D. (2020). Importance of drive-row vegetation for soil carbon storage in woody perennial crops: A regional study. Geoderma, 377, 114591. https://doi.org/10.1016/J.GEODERMA.2020.114591
Möck, M., y Feindt, P. H. (2024). Learning mode misfits in policy learning: typology, case study and lessons learnt. Journal of European Public Policy, 31(7), 2050–2075. https://doi.org/10.1080/13501763.2023.2280678
Molotoks, A., Smith, P., y Dawson, T. P. (2021). Impacts of land use, population, and climate change on global food security. Food and Energy Security, 10(1), e261. https://doi.org/10.1002/FES3.261
Montiel, M. S. (2009). El contexto socioeconómico de la Agricultura Ecológica: la evolución de los sistemas agroalimentarios. Sevilla, España. http://institucional.us. es/compromiso/libreconf/docs/sistemas.pdf
Moreira, F. de A., Dalla Fontana, M., Sepe, P. M., Lopes, M. V., Moura, L. do V., Medeiros, L. S., de Kraker, J., Malheiros, T. F., y Di Giulio, G. M. (2022). Co-creating sustainability indicators for the local water–energy–food nexus. Sustainability Science, 17(6), 2315–2329. https://doi.org/10.1007/S11625-022 01141-Y/FIGURES/4
Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Lampe, M. V., Lotze-Campen, H., Mason D'Croz, D., Van Meijl, H., Van Der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., … y Performed, D. W. (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3274–3279. https://doi.org/10.1073/pnas.1222465110
Oliveira, R. (2022). FoodLink—A Network for Driving Food Transition in the Lisbon Metropolitan Area. Land, 11(11). https://doi.org/10.3390/land11112047
ONU (2022). Transformar el sistema agroalimentario para resolver los retos más importantes del mundo. Noticias ONU. Mirada global, historias humanas. Disponible en https://news.un.org/es/story/2023/07/1522892
Pinardi, S., Salis, M., Sartor, G., y Meo, R. (2023). EU−Africa: Digital and Social Questions in a Multicultural Agroecological Transition for the Cocoa Production in Africa. Social Sciences, 12(7). https://doi.org/10.3390/socsci12070398
Plassnig, S. N., Pettit, M., Reichborn-Kjennerud, K., y Säumel, I. (2022). Successful scaling of Edible City Solutions to promote food citizenship and sustainability in food system transitions. Frontiers in Sustainable Cities, 4, 1032836. https://doi.org/10.3389/FRSC.2022.1032836/BIBTEX
Puerari, E., J C de Koning, J. I., von Wirth, T., Karré, P. M., Mulder, I. J., y Loorbach, D. A. (2018). Co-Creation Dynamics in Urban Living Labs. Sustainability, 10(6). https://doi.org/https://doi.org/10.3390/su10061893
Roversi, S., Laricchia, C., y Lombardi, M. (2020). Sustainable development goals and agro-food system: The case study of the future food institute. In Proceedings of the 3rd International Conference on Economics and Social Sciences, Bucharest, Romania (pp. 15-16). Sciendo. https://doi.org/10.2478/9788395815072-060
Rowan, N. J., y Casey, O. (2021). Empower Eco multiactor HUB: A triple helix ‘academia–industry–authority’ approach to creating and sharing potentially disruptive tools for addressing novel and emerging new Green Deal opportunities under a United Nations Sustainable Development Goals framework. Current Opinion in Environmental Science & Health, 21, 100254. https://doi.org/10.1016/J.COESH.2021.100254
Säumel, I., Reddy, S. E., y Wachtel, T. (2019). Edible city solutions-one step further to foster social resilience through enhanced socio-cultural ecosystem services in cities. Sustainability (Switzerland), 11(4). https://doi.org/10.3390/SU11040972
Sintayehu, D. W., Kassa, A. K., Tessema, N., Girma, B., Alemayehu, S., y Hassen, J. Y. (2023). Drought Characterization and Potential of Nature-Based Solutions for Drought Risk Mitigation in Eastern Ethiopia. Sustainability, 15(15).
Sonnino, R. (2013). Local foodscapes: place and power in the agri-food system. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 63(sup1), 2-7.
Tam, V. W., Butera, A., Le, K., y Li, W. (2021). CO2 concrete and its practical value utilising living lab methodologies. Cleaner Engineering and Technology, 3, 100131. https://doi.org/10.1016/J.CLET.2021.100131
Terribile, F., Acutis, M., Agrillo, A., Anzalone, E., Azam-Ali, S., Bancheri, M., Baumann, P., Birli, B., Bonfante, A., Botta, M., Cavaliere, F., Colandrea, M., D’Antonio, A., De Mascellis, R., De Michele, C., De Paoli, G., Monica, C. Della, Di Leginio, M., Ferlan, M., … y Basile, A. (2024). The LANDSUPPORT geospatial decision support system (S-DSS) vision: Operational tools to implement sustainability policies in land planning and management. Land Degradation and Development, 35(2), 813–834. https://doi.org/10.1002/LDR.4954
Thomas, A., Barczak, A., y Zakhia-Rozis, N. (2022). Sustainable food systems for food security: Need for combination of local and global approaches (p. 222). Éditions Quae.
Toffolini, Q., Capitaine, M., Hannachi, M., y Cerf, M. (2021). Implementing agricultural living labs that renew actors’ roles within existing innovation systems: A case study in France. Journal of Rural Studies, 88, 157–168. https://doi.org/10.1016/J.JRURSTUD.2021.10.015
Toffolini, Q., Hannachi, M., Capitaine, M., y Cerf, M. (2023). Ideal-types of experimentation practices in agricultural Living Labs: Various appropriations of an open innovation model. Agricultural Systems, 208, 103661. https://doi.org/10.1016/J.AGSY.2023.103661
Torrijos, V., Calvo Dopico, D., y Soto, M. (2021). Integration of food waste composting and vegetable gardens in a university campus. Journal of Cleaner Production, 315, 128175. https://doi.org/10.1016/J.JCLEPRO.2021.128175
United Nations Department of Economic and Social Affairs, Population Division. (2022). World Population Prospects 2022: Summary of Results. (UN DESA/POP/2022/TR/NO. 3). Disponible en https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
Vilariño, F., y Karatzas, D. (2018). The Library Living Lab: A Collaborative Innovation Model for Public Libraries. Technology Innovation Management Review, 8(12), 17–25. https://doi.org/10.22215/TIMREVIEW/1202
Von Hippel, E. (2005). Democratizing Innovation. In Democratizing Innovation. The MIT Press. https://doi.org/10.7551/MITPRESS/2333.001.0001
Von Wirth, T., Fuenfschilling, L., Frantzeskaki, N., y Coenen, L. (2019). Impacts of urban living labs on sustainability transitions: mechanisms and strategies for systemic change through experimentation. European Planning Studies, 27(2), 229–257. https://doi.org/10.1080/09654313.2018.1504895
Wieliczko, B., y Floriańczyk, Z. (2022). Priorities for Research on Sustainable Agriculture: The Case of Poland. Energies, 15(1). https://doi.org/10.3390/en15010257
Yahya, F., El Samrani, A., Khalil, M., Abdin, A. E.-D., El-Kholy, R., Embaby, M., Negm, M., De Ketelaere, D., Spiteri, A., Pana, E., y Takavakoglou, V. (2023). Decentralized Wetland- Aquaponics Addressing Environmental Degradation and Food Security Challenges in Disadvantaged Rural Areas: A Nature-Based Solution Driven by Mediterranean Living Labs. Sustainability, 15(20), 15024. https://doi.org/10.3390/SU152015024
Yan, W., y Roggema, R. (2019). Developing a Design-Led Approach for the Food-Energy-Water Nexus in Cities. Urban Planning, 4(1), 123–138. https://doi.org/10.17645/UP.V4I1.1739
Licencia
Derechos de autor 2024 Yeimy Alejandra Montenegro, Jhon Kennedy Tuquerres, Angelis Marbello Santrich, Martha E. Cárdenas Toquica, Maria Fernanda Mideros Bastidas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.