Naturaleza y Sociedad. Desafíos Medioambientales

Nat. Soc.: Desafíos Medioambient. | eISSN 2805-8631

Design and evaluation of AgroPV systems in agricultural areas of Colombia

No. 10 (2024-11-29)
  • Andrea Cusva García
    Universidad de los Andes (Colombia)
  • Guillermo Jimenéz Estévez
    Universidad de los Andes (Colombia)
  • Jorge López Jiménez
    Universidad de los Andes (Colombia)
  • Nicanor Quijano Silva
    Universidad de los Andes (Colombia)

Abstract

In the context of climate change and increasing demand for food and energy, agricultural and energy sustainability faces economic, logistical, and environmental challenges. In traditional food and energy production, limited resources such as water and soil are contested, and factors to mitigate their environmental impact are not considered. In this context, replacing fossil fuels with renewable energy sources is a crucial alternative in order to reduce greenhouse gas emissions. Agrophotovoltaic technology (AgroPV) is positioned as an effective mediator between the energy and agricultural sectors, allowing the shared use of land for energy and food production. This innovation not only increases soil use efficiency and reduces water consumption but also strengthens crop resilience to climate change and offers a new source of income for farmers. Therefore, this article proposes a methodology for the design of AgroPV systems in agricultural areas of Colombia, addressing the selection of the study area, its technical and economic characterization, the identification of impacts, opportunities, and barriers, and its potential for massification. The results highlight that the designed AgroPV system can diversify agricultural income, contribute to carbon neutrality, increase crop resilience to climate change, improve food security, and optimize land use.

Keywords: agriculture, solar photovoltaic energy, agrivoltaic systems, sustainable development, climate resilience

References

Agir, S., Derin-Gure, P., y Senturk, B. (2023). Farmers’ perspectives on challenges and opportunities of agrivoltaics in Turkiye: An institutional perspective. Renewable Energy, 212, 35-49.

Ai Leon, y Keiichi, N. I. (2018). Assessment of new functional units for agrivoltaic systems. Journal of Environmental Management, 226, 493-498.

Canales, N., y Trujillo, M. (2021). La red de valor de la yuca y su potencial en la bioeconomía de Colombia. Instituto de Ambiente de Estocolmo.

Cho, J., Park, S., Park, A. R., Chan Lee, O., Nam, G., y In-Ho Ra. (2020). Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies, 13, 4815.

Cusva García, A. (2022). Análisis para determinar la viabilidad y potencialidad de sistemas agrofotovoltaicos en zonas agricultoras de Colombia. [Tesis de Maestría, Universidad de los Andes]. Repositorio Séneca. Disponible en: http://hdl.handle.net/1992/55211

Dinesh, H., y Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299-308.

Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., y Ferard, Y. (2011a). Combining Solar Photovoltaic Panels and Food Crops for Optimizing Land Use: Towards Agrivoltaic Schemes. Renewable Energy, 36, 275-283.

Elamari, Y., Cheviron, B., Lopez, J.-M., Dejean, C., y Belaud, G. (2018). Water Budget and crop modelling for agrivoltaic systems: application to irrigated lettuces. Agricultural Water Management, 208, 440-453.

FAO (2014). The water-energy-food nexus: A new approach in support of food security and sustainable agriculture. The Food and Agricultural Organisation of the United Nations.

Fritsche, U. R., Berades, G., Cowie, A. L., Kline, K. L., Dale, V. H., Johnson, F. X., et al. (2017). Global land Outlook working paper energy and land use. 10.13140/RG.2.2.24905.44648.

Giri, N. C., y Mohanty, R. C. (2022). Design of agrivoltaic system to optimize land use for clean energy-food production: A socio-economic and environmental assessment. Clean Technologies and Environmental Policy, 24(9), 2595–2606.

Goetzberger, A., y Zastrow, A. (1982). On the coexistence of solar-energy conversion and plant cultivation. International Journal of Solar Energy, 1(1), 55-69.

Gorjian, S., Singf, R., Shukla, A., y Mazhar, A. (2020). On-farm applications of solar PV systems: Technologies, applications and environmental impacts. En Photovoltaic Solar Energy Conversion (Capítulo 6, pp. 147-190).

Gulhane, S. G., y Phadke, A. R. (2023). Design of agro-photovoltaic system for optimized energy generation and crop yield using fuzzy framework. En 2023 2nd International Conference for Innovation in Technology (INOCON) (pp. 1-6), Bangalore, India.

Hassanpour Adeh, E., Selker, J. S., y Higgins, C. W. (2018). Remarkable agrivoltaic influence on soil moisture, micrometeorology, and water-use efficiency. PLOS ONE, 13(11). https://doi.org/10.1371/journal.pone.0203256.

IRENA (2018). Renewable power generation costs in 2018. International Renewable Energy Agency, p. 9.

Johnston, M., y Onwueme, L. (1998). Effect of Shade on Photosynthetic Pigments in Tropical Root Crops: yam, Taro, Tannia, Cassava and Sweet Potato. Experimental Agriculture, 34, 301- 312.

Katsikogiannis, O. A., Ziar, H., y Isabella, O. (2022). Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach. Applied Energy, 309, 118475.

MADR (2019). Subsector Productivo de la Yuca. Ministerio de Agricultura y Desarrollo Rural. Dirección de Cadenas Agrícolas y Forestales.

MADR (2020). Plan Departamental de Extensión Agropecuaria 2020-2023. Secretaría de Agricultura y Desarrollo Rural de Bolívar.

Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., y Wery, J. (2013). Microclimate under agrivoltaic systems: is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology, 177, 117-132.

Marrou, H., Wery, J., Dufour, L., y Dupraz, C. (2013). Productivity and Radiation Use Efficiency of Lettuces Grown in the Partial Shade of Photovoltaic Panels. European Journal of Agronomy, 44, 54-66.

Muñoz, B., y Romana, M. G. (2016). Aplicación de métodos de decisión multicriterio discretos al análisis de alternativas en estudios informativos de infraestructuras de transporte. Pensamiento Matemático, VI, 27-46.

Naciones Unidas (2022, 24 de mayo). Objetivos de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/

OECD (2019). Estudios Económicos de la OCDE: Colombia 2019. OECD Publishing.

Pan, W., Hu, C., Huang, G., Dai, W.-q., y Pan, W. (2024). Energy footprint: Concept, application and modeling. Ecological Indicators, 158, 111459.

Pérez, L., y Gamarra, C. (2018). Colombia: A Mega-Diverse Country in Biodiversity and Ecosystem Services. Journal of Environmental Protection, 9, 1413-1426.

Perna, A., Grubbs, E., Agrawal, R., y Bermel, P. (2019). Design Considerations for Agrophotovoltaic Systems: Maintaining PV Area with Increased Crop Yield. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (pp. 0668-0672). IEEE.

Ravi, S., Macknick, J., Lobell, D., Field, C., Ganesan, K., Jain, R., et al. (2016). Colocation opportunities for large solar infrastructures in drylands. Applied Energy, 165, 383-392.

Schindele, S., Trommsdorff, M., Schalaak, A., Obergfell, T., Bopp, G., Reise, C., et al. (2020). Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Applied Energy, 265.

Sekiyama, T., y Nagashima, A. (2019). Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments, 6, 65.

Silalahi, D., Blakers, A., Stocks, M., Bin Lu, Cheng, C., y Hayes, L. (2021). Indonesia´s Vast Solar Energy Potential. Energies, 15, 5424.

Singhal, A., Raina, G., Meena, D. K., y Sinha, S. (2023). Technical feasibility of agro-photovoltaic system in composite climate of India for future sustainability. In 2023 IEEE 3rd International Conference on Sustainable Energy and Future Electric Transportation (SEFET) (pp. 1-6). Bhubaneswar, India.

Superintendencia de Servicios Públicos Domiciliarios (2019). Diagnóstico de la calidad del servicio de energía eléctrica en Colombia.

Superintendencia de Servicios Públicos Domiciliarios (2020). Boletín tarifario. Dirección Técnica de Gestión de Energía Superintendencia delegada para la Energía y Gas Combustible.

Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., y Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. Agronomy for Sustainable Development, 39, 35.

Willockx, B., Reher, T., Lavaert, C., Herteleer, B., Van de Poel, B., y Cappelle, J. (2024). Design and evaluation of an agrivoltaic system for a pear orchard. Applied Energy, 353, 122166.

World Economic Forum. (2009). Annual Report 2008-2009. Disponible en: https://www3.weforum.org/docs/WEF_AnnualReport_2008-09.pdf

Xue, J. (2017). Photovoltaic Agriculture - New Opportunity for Photovoltaic Applications in China. Renewable and Sustainable Energy Reviews, 73, 1-9.

Zainol, M., Mahyuddin, M. A., y Atiqui Mohd, M. (2021). Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review. Sustainability, 12, 7846.

License

Copyright (c) 2024 Andrea Cusva-García, Guillermo Jiménez-Estévez, Jorge López Jiménez , Nicanor Quijano

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.