Naturaleza y Sociedad. Desafíos Medioambientales

Nat. Soc.: Desafíos Medioambient. | eISSN 2805-8631

Modeling the correlation between potato disease spread and climate variables to guide fungicide applications in Cundinamarca, Colombia

No. 1 (2021-12-01)
  • Estefanía Luengas
    Universidad Militar Nueva Granada (Colombia)
  • Andrés Guhl
    Universidad de los Andes (Colombia)
  • Juan Camilo Castro
    Georgia Institute of Technology (United States)
  • Laura Natalia González García
    Universidad de los Andes (Colombia)
  • Silvia Restrepo
    Universidad de los Andes (Colombia)

Abstract

Potato production relies on frequent fungicide spraying, damaging the environment, increasing production costs, and eventually leading to crop abandonment. To better guide fungicide spraying in the field, the influence of weather on pathogen characteristics should be understood. To achieve this, we sampled a potato pathogen, Phytophthora infestans, in twelve commercial potato fields in the department of Cundinamarca, Colombia. Disease samples were collected to estimate the number of sporangia. Fields were planted with different potato cultivars of varying disease resistance/susceptibility, and chemical management was performed according to standard agricultural practices. The relationship between climate conditions and sporangia production not only depended on climate conditions on the day of collection, but also on weather variables one or two days prior. Based on climate data, we also evaluated the potential non-linear effects of climate variables and used this analysis to perform a forecast simulation. We used the GeoSimCast model to estimate the number of fungicide applications required to control late blight in this region. The number of applications suggested by the model run for 60% relative humidity was very different from the observed number of applications. The model results for 90% relative humidity estimated a number closer to the observed value, suggesting that potato growers always assume optimal conditions for disease development and spray fungicides accordingly. Our results indicate that this model has the potential to guide seeding plans and the chemical management of late blight and other plant diseases in Colombia.

Keywords: climate, GeoSimCast, late blight, Phytophthora infestans, potato crop, sporangia, weather

References

Andrade-Piedra, J. L., Hijmans, R. J., Forbes, G. A., Fry, W. E., & Nelson, R. J. (2005). Simulation of potato late blight in the Andes. I: Modification and parameterization of the lateblight model. Phytopathology, 95(10), 1191-1199. https://doi.org/10.1094/PHYTO-95-1191

Andrade-Piedra, J. L., Hijmans, R. J., Juárez, H. S., Forbes, G. A., Shtienberg, D., & Fry, W. E. (2005). Simulation of potato late blight in the Andes. II: Validation of the lateblight model. Phytopathology, 95(10), 1200-1208. https://doi.org/10.1094/PHYTO-95-1200

Canadian Centre for Climate Modelling and Analysis. (2013). Analysis. Models. https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/modeling-projections-analysis/centre-modelling-analysis.html

Cárdenas, M., Grajales, A., Sierra, R., Rojas, A., González-Almario, A., Vargas, A., Marín, M., Fermín, G., Lagos, L. E., & Grünwald, N. J. (2011). Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genetics, 12(1), 23. https://doi.org/10.1186/1471-2156-12-23

Chardón, C. E. (1928). Contribución al estudio de la flora micológica de Colombia. Boletín de la Sociedad Española de Historia Natural, 28(2), 111-124.

Crosier, W. F. (1934). Studies in the biology of Phytophthora infestans (Mont.) de Bary. Ithaca: Cornell Univeristy.

Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: The American Phytopathological Society (aps Press).

Esri. (2009). ArcGIS Mapping Software. Environmental Systems Resource Institute, Redlands, ca.

FAOSTAT. (2019). Commodities by regions. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#rankings/commodities_by_regions_imports_rankings/commodities_by_regions_imports

Forbes, G., Fry, W., Andrade-Piedra, J., & Shtienberg, D. (2008). Simulation models for potato late blight management and ecology. In A.Ciancio & K.Mukerji (Eds.), Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria (pp. 161-177). Dordrecht, Netherlands: Springer.

Fry, W.E., Apple, A.E., & Bruhn, J.A. (1983). Evaluation of potato late blight forecasts modified to incorporate host resistance and fungicide weathering. Phytopathology, 73(7), 1054-1059. https://doi.org/10.1094/Phyto-73-1054

Fry, W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 9(3), 385-402. https://doi.org/10.1111/j.1364-3703.2007.00465.x

Giraldo, D., Juarez, H., Pérez, W., Trebejo, I., Yzarra, W., & Forbes, G. (2010). [Severity of the potato late blight (Phytophthora infestans) in agricultural areas of Peru associated with climate change]. Revista Peruana Geo-Atmosférica, (2), 56-67.

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424-438. https://doi.org/10.2307/1912791

Grünwald, N. J., Rubio-Covarrubias, O. A., & Fry, W. E. (2000). Potato late-blight management in the Toluca Valley: forecasts and resistant cultivars. Plant Disease, 84(4), 410-416. https://doi.org/10.1094/PDIS.2000.84.4.410

Grünwald, N. J., Montes, G. R., & Fry, W. E. (2003). Epidemiología comparativa del tizón tardío de la papa. Implicaciones de manejo contrastando climas del trópico alto y climas templados. In E. N.Fernández-Northcote (Ed.), Proceedings of the International Workshop Complementing Resistance to Late Blight (Phytophthora infestans) in the Andes, February 13-16, 2001, Cochabamba, Bolivia (pp. 133-138). Lima: International Potato Center.

Grünwald, N. J., Montes, G. R., Saldaña, H. L., Covarrubias, O. R., & Fry, W. E. (2002). Potato late blight management in the Toluca Valley: Field validation of SimCast modified for cultivars with high field resistance. Plant Disease, 86(10), 1163-1168. https://doi.org/10.1094/PDIS.2002.86.10.1163

Harrison, J. (1992). Effects of the aerial environment on late blight of potato foliage–a review. Plant Pathology, 41(4), 384-416. https://doi.org/10.1111/j.1365-3059.1992.tb02435.x

Harrison, J., & Lowe, R. (1989). Effects of humidity and air speed on sporulation of Phytophthora infestans on potato leaves. Plant Pathology, 38(4), 585-591. https://doi.org/10.1111/j.1365-3059.1989.tb01455.x

Hijmans, R., Forbes, G., & Walker, T. (2000). Estimating the global severity of potato late blight with GIS‐linked disease forecast models. Plant Pathology, 49(6), 697-705. https://doi.org/10.1046/j.1365-3059.2000.00511.x

Hutchinson, M. (2004). anusplin version 4.3 User Guide. Canberra: Centre for Resource and Environmental Studies, The Australian National University.

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2006). Atlas Climatológico de Colombia. Bogotá: Instituto de Meteorología, Hidrología y Estudios Ambientales.

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2009). Official communication of Anomalies. [Online].

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2011). Official communication of Anomalies. http://www.ideam.gov.co/web/atencion-y-participacion-ciudadana/publicaciones-ideam

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2012). Official communication of Anomalies. http://www.ideam.gov.co/web/atencion-y-participacion-ciudadana/publicaciones-ideam

Judelson, H. S. (1997). The genetics and biology of Phytophthora infestans: modern approaches to a historical challenge. Fungal Genetics and Biology, 22(2), 65-76. https://doi.org/10.1006/fgbi.1997.1006

Kanetis, L., Holmes, G., & Ojiambo, P. (2010). Survival of Pseudoperonospora cubensis sporangia exposed to solar radiation. Plant Pathology, 59(2), 313-323. https://doi.org/10.1111/j.1365-3059.2009.02211.x

Krause, R.A. (1975). Blitecast: a computerized forecast of potato late blight. Plant Disease Reporter, 59(2), 95-98.

Lima, M., Maffia, L., Barreto, R., & Mizubuti, E. (2009). Phytophthora infestans in a subtropical region: survival on tomato debris, temporal dynamics of airborne sporangia and alternative hosts. Plant Pathology, 58(1), 87-99. https://doi.org/10.1111/J.1365-3059.2008.01951.X

MacKenzie, D., Elliott, V., Kidney, B., King, E., Rayer, M., & Theberge, R. (1983). Application of modern approaches to the study of the epidemiology of diseases caused by Phytophthora. In D.Erwin, S.Bartnicki-Garcia, & P.Tsao (Eds.), Phytophthora: Its Biology, Taxonomy, Ecology and Pathology (pp. 303-312). St. Paul:The American Phytopathological Society.

Mizubuti, E. S., Aylor, D. E., & Fry, W. E. (2000). Survival of Phytophthora infestans sporangia exposed to solar radiation. Phytopathology, 90(1), 78-84. https://doi.org/10.1094/PHYTO.2000.90.1.78

Olanya, M., Larkin, R., Zhongqi, H., & Jain, S. (2011). Survival potential of Phytophthora infestans sporangia in relation to meteorological factors. American Phytopathological Society Abstracts, 101(6), S132.

Pinzón, A., Barreto, E., Bernal, A., Achenie, L., Barrios, A. F. G., Isea, R., & Restrepo, S. (2009). Computational models in plant-pathogen interactions:The case of Phytophthora infestans. Theoretical Biology and Medical Modeling, 6, 24. https://doi.org/10.1186/1742-4682-6-24

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Sunseri, M. A., Johnson, D. A., & Dasgupta, N. (2002). Survival of detached sporangia of Phytophthora infestans exposed to ambient, relatively dry atmospheric conditions. American Journal of Potato Research, 79(6), 443-450. https://doi.org/10.1007/BF02871689

Vargas, A. M., Ocampo, L. M. Q., Céspedes, M. C., Carreño, N., González, A., Rojas, A., Zuluaga, A. P., Myers, K., Fry, W. E., & Jiménez, P. (2009). Characterization of Phytophthora infestans populations in Colombia: first report of the A2 mating type. Phytopathology, 99(1), 82-88. https://doi.org/10.1094/PHYTO-99-1-0082

License

Copyright (c) 2021 Estefanía Luengas, Andrés Guhl, Juan Camilo Castro, Laura Natalia González García, Silvia Restrepo

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.