Climatic Suitability of Three Invasive Vertebrate Species in Protected Natural Areas of Northeastern Mexico
No. 14 (2026-02-13)Author(s)
-
Jorge E. Ramírez-AlboresDepartment of Botany, Universidad Autónoma Agraria Antonio Narro (Mexico)ORCID iD: https://orcid.org/0000-0001-5295-3717
-
Heliot ZarzaDepartment of Environmental Sciences, Metropolitan Autonomous University, Lerma Unit (Mexico)ORCID iD: https://orcid.org/0000-0003-2127-0811
-
Marlín Pérez-SuárezInstitute of Agricultural and Rural Sciences, Autonomous University of the State of Mexico (Mexico)ORCID iD: https://orcid.org/0000-0001-9996-4771
-
José F. González MayaDepartamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma (México)ORCID iD: https://orcid.org/0000-0002-8942-5157
-
J. Javier Ochoa EspinozaDepartamento de Recursos Naturales Renovables, Universidad Autónoma Agraria Antonio Narro (México)ORCID iD: https://orcid.org/0000-0002-2140-8676
Abstract
Protected Natural Areas (PNAs) are essential for biodiversity conservation, but they face multiple threats, particularly biological invasions driven by ongoing, intense human activities. The northeastern region of Mexico, covering Coahuila, Nuevo León, and Tamaulipas, has high biodiversity and endemism, with more than 80 PNAs. However, this region has recently recorded the presence of invasive exotic species (IES) with strong potential for spread. This paper analyzes biological invasions by assessing the current and future climatic suitability of three invasive exotic species: collared dove (Streptopelia decaocto), feral pig (Sus scrofa), and Barbary sheep (Ammotragus lervia) in PNAs of northeastern Mexico. The goal is to identify high-risk invasion areas and to inform the design of preventive management and conservation strategies. Using the MaxEnt program to model the ecological niche of these species, potential geographic distribution areas were identified, and the highest-risk zones within the PNAs were outlined. The potential distribution of the three species was estimated to cover approximately 44% of the area of these conservation zones; the most vulnerable areas are Maderas del Carmen, Ocampo, and Cumbres de Monterrey. The obtained models indicate an increased distribution of A. lervia and S. scrofa domesticus under the future climate scenario, whereas the distribution of S. decaocto shows a slight decrease. This study recommends the regional implementation of a monitoring and surveillance strategy for invasive exotic species to guide management actions that interrupt their dispersal and reduce their impacts on native flora and fauna in northeastern Mexico.
References
Ahmad, R., Khuroo, A.A., Charles, B., Hamid, M., Rashid, I. y Aravind, N.A. (2019). Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Scientific Reports, 9, 11395. https://doi.org/10.1038/s41598-019-47859-1
Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. y Anderson, R.P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541-545. https://doi.org/10.1111/ecog.01132
Alexander, J.M. y Edwards P.J. (2010). Limits to the niche and range margins of alien species. Oikos, 119(9), 1377–1386. https://doi.org/10.1111/j.1600-0706.2009.17977.x
Allen, M.L., Elbroch, L.M. y Wittmer, H.U. (2021). Can’t bear the competition: Energetic losses from kleptoparasitism by a dominant scavenger may alter foraging behaviors of an apex predator. Basic and Applied Ecology, 51, 1–10. https://doi.org/10.1016/j.baae.2021.01.011
Allouche, O., Tsoar, A. y Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Álvarez-Romero, J.G., Medellín, R.A., Oliveras de Ita, A., Gómez de Silva, H. y Sánchez, O. (2008). Animales Exóticos en México: Una Amenaza para la Biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Instituto de Ecología-UNAM, Secretaria de Medio Ambiente y Recursos Naturales, México.
Anderson, A., Slootmaker, C., Harper, E., Holderieath, J. y Shwiff, S.A. (2016). Economic estimates of feral swine damage and control in 11 US states. Crop Protection, 89, 89–94. https://doi.org/10.1016/j.cropro.2016.06.023
Ballari, S.A. y Barrios-García, M.N. (2014). A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Review, 44, 124–134. https://doi.org/10.1111/mam.12015
Barbet-Massin, M., Rome, Q., Villemant, C. y Courchamp, F. (2018). Can species distribution models really predict the expansion of invasive species? PLoS One, 13(3), e0193085. https://doi.org/10.1371/journal.pone.0193085
Barbosa, F.G., Schneck, F. y Melo, A.S. (2012). Use of ecological niche models to predict the distribution of invasive species: a scientometric analysis. Brazilian Journal of Biology, 72, 821–829. https://doi.org/10.1590/S1519-69842012000500007
Bellard, C., Jeschke, J.M., Leroy, B. y Mace, G.M. (2018). Insights from modeling studies on how climate change affects invasive alien species geography. Ecology and Evolution, 8, 5688-5700. https://doi.org/10.1002/ece3.4098
Bolds, S.A., Lockaby, B.G., Ditchkoff, S.S., Smith, M.D. y VerCauteren, K.C. (2021). Impacts of a large invasive mammal on water quality in riparian ecosystems. Journal of Environmental Quality, 50, 441–453. https://doi.org/10.1002/jeq2.20194
Brewer, M.J., Butler, A. y Cooksley, S.L. (2016). The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution, 7, 679–692. https://doi.org/10.1111/2041-210X.12541
Broennimann, O., Treier, U.A., Muller-Scharer, H., Thuiller, W., Peterson, A.T. y Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709. https://doi.org/10.1111/j.1461-0248.2007.01060.x
Brown, J.L. (2014). SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5, 694–700. https://doi.org/10.1111/2041-210X.12200
Burgiel, S.W. y Muir, A.A. (2010). Invasive species, climate change and ecosystem-based adaptation: Addressing multiple drivers of global change. Global Invasive Species Programme (GISP). https://portals.iucn.org/library/node/9688
Carneiro, L., Miiler, N.O.R., Cuthbert, R.N. y Vitule, J.R.S. (2024). Biological invasions negatively impact global protected areas. Science of the Total Environment, 948, 174823. https://doi.org/10.1016/j.scitotenv.2024.174823
Carneiro, L., Miiler, N.O.R., Prestas, J.G., Vitule, J.R.S. y Cuthbert, R.N. (2025). Impacts and mechanisms of biological invasions in global protected areas. Biological Invasions, 27, 20. https://doi.org/10.1007/s10530-024-03498-w
Chinchio, E., Crotta, M., Romeo, C., Drewe, J.A., Guitian, J. y Ferrari, N. (2020). Invasive alien species and disease risk: An open challenge in public and animal health. PLoS Pathogens, 16(10), e1008922. https://doi.org/10.1371/journal.ppat.1008922
Cobos, M.E., Peterson, A.T., Barve, N. y Osorio-Olvera, L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. Peer Journal, 7, e6281. https://doi.org/10.7717/peerj.6281.
Comité Asesor Nacional sobre Especies Invasoras. (2010). Estrategia Nacional sobre especies invasoras en México. Prevención, control y erradicación. CONABIO, CONANP y SEMARNAT. México. https://bioteca.biodiversidad.gob.mx/janium/Documentos/6643.pdf
Comisión Nacional de Áreas Protegidas [CONANP]. (2025). Áreas Naturales Protegidas. CONANP. México. https://www.gob.mx/conanp/documentos/areas-naturales-protegidas-278226
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO]. (2016). Estrategia Nacional sobre Biodiversidad de México y Plan de acción 2016-2030. CONABIO.
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO]. (2023). Información sobre Especies Invasoras en el Sistema Nacional de Información sobre Biodiversidad. CONABIO. https://www.biodiversidad.gob.mx/especies/Invasoras
D’Antonio, C., Levine, J. y Thomson, M.A. (2001). Ecosystem resistance to invasion and the role of propagule supply: a California perspective. Journal of Mediterranean Ecology, 2, 233-245. https://labs.eemb.ucsb.edu/dantonio/carla/CV_Publications/dantonio_levine_thomsen_2001.pdf
Dueñas, M.A., Hemming, D.J., Roberts, A. y Diaz-Soltero, H. (2021). The threat of invasive species to IUCN-listed critically endangered species: A systematic review. Global Ecology and Conservation, 26, e01476. https://doi.org/10.1016/j.gecco.2021.e01476
El-Barougy, R.F., Dakhil, M.A., Halmy, M.W., Gray, S.M., Abdelaal, M., Khedr, A-H. A. y Bersier, L-F. (2021). Invasion risk assessment using trait-environment and species distribution modelling techniques in an arid protected area: Towards conservation prioritization. Ecological Indicators, 129, 107951. https://doi.org/10.1016/j.ecolind.2021.107951
Elith, J.H., Graham, C.P.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.S., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M.M., Peterson, A.T., Phillips, S.J., …. y Zimmermann, N.E (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Elith, J.H., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. y Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Environmental Systems Research Institute [ESRI]. (2014). ArcGIS for Desktop 10.2. https://www.esri.com.
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J. y Taylor, K.E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
Fick, S.E. y Hijmans, R.J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
Finch, D.M., Buttler, J.L., Runyon, J.B., Fettig, C.J., Kilkenny, F.F., Jose, S., Frankel, S.J., Cushman, S.A., Cobb, R.C. y Dukes, J.S. (2021). Effects of Climate Change on Invasive Species. En T.M. Poland, T. Patel-Weynand, D.M. Finch, C.F. Miniat, D.C. Hayes y V.M. Lopez (eds.), Invasive Species in Forests and Rangelands of the United States (pp. 57-83). Springer, Cham. https://doi.org/10.1007/978-3-030-45367-1_4
Foxcroft, L.C., Pyšek, P., Richardson, D.M., Genovesi, P. y MacFadyen, S. (2017). Plant invasion science in protected areas: progress and priorities. Biological Invasions, 19, 1353–1378. https://doi.org/10.1007/s10530-016-1367-z
Gallagher, R.V., Beaumont, L.J., Hughes, L. y Leishman, M.R. (2010). Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology, 98, 790-799. https://doi.org/10.1111/j.1365-2745.2010.01677.x
Gallardo, B., Bacher, S., Barbosa, A.M., Gallien, L., González-Moreno, P., Martínez-Bolea, V., Sorte, C., Vimercati, G. y Vilà, M. (2024). Risks posed by invasive species to the provision of ecosystem services in Europe. Nature Communications, 15, 2631. https://doi.org/10.1038/s41467-024-46818-3
Gastelum-Mendoza, F.I., González-Saldívar, F.N., Lozano-Cavazos, E.A., Uvalle-Sauceda, J.I., Serna-Lagunes, R. y Cantú-Ayala, C.M. (2023). Hábitos forrajeros de Ammotragus lervia (Pallas, 1777) (Artiodactyla: Bovidae) en matorral desértico rosetófilo de Coahuila, México. Acta Zoológica Mexicana (nueva serie), 39, 1–17. https://doi.org/10.21829/azm.2023.3912581
Global Biodiversity Information Facility [GBIF.org] (8 de septiembre de 2023). Streptopelia decaocto in GBIF. Occurrence Download. https://www.gbif.org/occurrence/download/0009129-230828120925497
Global Biodiversity Information Facility [GBIF.org] (4 de junio de 2024). Ammotragus lervia in GBIF (Global Biodiversity Information Facility) Occurrence Download. https://doi.org/10.15468/dl.6gdjpe
Global Biodiversity Information Facility [GBIF.org] (4 de junio de 2024). Sus scrofa in GBIF (Global Biodiversity Information Facility) Occurrence Download. https://doi.org/10.15468/dl.wh4tts
Guisan, A. y Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Gutiérrez-Zapata, S., Santoro, S., Gegundez-Arías, M.E., Selva, N. y Calzada, J. (2024). Dog invasions in protected areas: a case study using camera, trapping, citizen science and artificial intelligence. Global Ecology and Conservation, 54, e03109. https://doi.org/10.1016/j.gecco.2024.e03109
Habibullah, M. S., Din, B. H., Tan, S. H. y Zahid, H. (2022). Impact of climate change on biodiversity loss: global evidence. Environmental Science and Pollution Research, 29(1), 1073-1086. https://doi.org/10.1007/s11356-021-15702-8
Hanley, N. y Roberts, M. (2019). The economic benefits of invasive species management. People and Nature, 1, 124-137. https://doi.org/10.1002/pan3.31
Hijmans, R.J. (2021). Geographic data analysis and modeling. R package raster version 3.4-10. https://cran.r-project.org/package=raster
Instituto Nacional de Estadística y Geografía [INEGI]. (2022). Atlas territorial de México. INEGI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463906223
Intergovernmental Panel on Climate Change [IPCC]. (2021). Summary for Policymakers. En V. Masson-Delmotte, P. Zhai, A. Pirani, A., S.L. Connors, S.L., et al. (coords.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–32), IPCC (Intergovernmental Panel on Climate Change). Cambridge University Press.
Kapitza, K., Zimmermann, H., Martin-López, B. y von Wehrden, H. (2019). Research on the social perception of invasive species: a systematic literature review. NeoBiota, 43, 47-68. https://doi.org/10.3897/neobiota.43.31619
Kariyawasam, C.S., Kumar, L. y Ratnayake, S.S. (2020). Potential risks of plant invasions in protected areas of Sri Lanka under climate change with special reference to threatened vertebrates. Climate, 8, 51. https://doi.org/10.3390/cli8040051
Kearing, M. y Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12, 334-350. https://doi.org/10.1111/j.1461-0248.2008.01277.x
Kettenring, K.M. y Adams, C.R. (2011). Lessons learned from invasive plant control experiments: a systematic review and meta‐analysis. Journal of Applied Ecology, 48, 970–979. https://doi.org/10.1111/j.1365-2664.2011.01979.x
Koenig, W.D. (2020). What are the competitive effects of invasive species? Forty years of the Eurasian collared-dove in North America. Biological Invasions, 22, 3645–3652. https://doi.org/10.1007/s10530-020-02350-1
Liu, C., White, M. y Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778-789. https://doi.org/10.1111/jbi.12058
Luna, I., Morrone, J.J. y Espinosa, D. (2004). Biodiversidad de la Sierra Madre Oriental. Facultad de Ciencias, Universidad Nacional Autónoma de México.
Ludwick, T.J., Fedynich, A.M. y Fitzsimmons, O.N. (2023). Breeding ecology of a columbid community occurring in south Texas with focus on Eurasian collared-doves (Streptopelia decaocto). The Southwestern Naturalist, 67(1), 1-9. https://doi.org/10.1894/0038-4909-67.1.1
McDonough, M.T., Ditchkoff, S.S., Smith, M.D. y Vercauteren, K.C. (2022). A review of the impacts of invasive wild pigs on native vertebrates. Mammalian Biology, 102, 279–290. http://doi.org/10.1007/s42991-022-00234-6
Melillo, J.M., Lu, X., Kicklighter, D.W., Reilly, J.M., Cai, Y. y Sokolov, A.P. (2016). Protected areas’ role in climate-change mitigation. Ambio, 45, 133–145. https://doi.org/10.1007/s13280-015-0693-1
Merow, C., Smith, M.J., Edwards Jr., T.C., Thomas, C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E. y Elith, J. (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography, 37, 1267–1281. https://doi.org/10.1111/ecog.00845
Naciones Unidas. (2023). Informe de los Objetivos de Desarrollo Sostenible. Naciones Unidas. https://www.un.org/sustainabledevelopment/es/climate-change-2/
Naimi, B. (2015). usdm: Uncertainty analysis for species distribution models. R Package v. 1. https://cran.r-project.org/web/packages/usdm/
Naimi, B. y Araújo, M.B. (2016). sdm: A reproducible and extensible R platform for species distribution modelling. Ecography, 39, 368–375. https://doi.org/10.1111/ecog.01881
Orozco, L., López-Pérez, A. M., Zarza, H., Suzán, G. y List, R. (2022). Dog demography and husbandry practices facilitate dog-wildlife conflict in a suburban-forest interface. Urban Ecosystems, 25(6), 1725-1734. https://doi.org/10.1007/s11252-022-01251-6
Packer, J.G., Meyerson, L.A., Richardson, D.M., … y Pyšek, P. (2017). Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions, 19(4), 1081–1096. https://doi.org/10.1007/s10530-016-1302-3.
Pepin, K.M., Davis, A.J., Beasley, J., Boughton, R., Campbell, T., Cooper, S.M., Gaston, W., Hartley, S., Kilgo, J.C., Wisely, S.M., Wyckoff, C. y VerCauteren, K.C. (2016). Contact heterogeneities in feral swine: Implications for disease management and future research. Ecosphere, 7, 1–11. https://doi.org/10.1002/ecs2.1230
Peterson, A.T., Papes, M. y Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Petitpierre, B., Kueffer, C., Broennimann, O, Randin, C., Daehler, C. y Guisan, A. (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. https://doi.org/10.1126/science.1215933
Phillips, S.J., Anderson, R.P. y Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E. y Blair, M.E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049
Pirani, A., Fuglestvedt, J.S., Byers, E., O’neill, B., Riahi, K., Lee, J.-Y., Marotzke, J., Rose, S.K., Schaeffer, R. y Tebaldi, C. (2024). Scenarios in IPCC assessments: Lessons from AR6 and opportunities for AR7. npj Climate Action, 3, 1. https://doi.org/10.1038/s44168-023-00082-1
Poling, T.D. y Hayslette, S.D. (2006). Dietary overlap and foraging competition between mourning doves and Eurasian collared-doves. Journal of Wildlife Management, 70(4), 998-1004. https://doi.org/10.2193/0022-541X(2006)70[998:DOAFCB]2.0.CO;2
Pulido-Chadid, K., Virtanen, E. y Geldmann, J. (2023). How effective are protected areas for reducing threats to biodiversity? A systematic review protocol. Environmental Evidence, 12,18. https://doi.org/10.1186/s13750-023-00311-4
R Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ramírez-Albores, J.E. y Badano, E. (2021). Alien species as counterpart of a megadiverse country as Mexico. Management of Biological Invasions, 12, 828-845. https://doi.org/10.3391/mbi.2021.12.4.04
Ramírez-Albores, J.E., Sánchez-González, L.A., Prieto-Torres, D.A. y Navarro-Sigüenza, A.G. (2024). Where are going now? The current and future distributions of the Monk parakeet (Myiopsitta monachus) and Eurasian collared dove (Streptopelia decaocto) in a megalopolis. Sustainability, 16, 7071. https://doi.org/10.3390/su16167071
Rekiel, A., Więcek, J. y Sońta, M. (2024). Wild boar (Sus scrofa L. 1758), a problematic but also a useful species―A review. Journal of Elementology, 29(3), 573-590. https://doi.org/10.5601/jelem.2023.28.4.3248
Risch, D.R., Ringma, J. y Price, M.R. (2021). The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity. Scientific Reports, 11(1), 13256. https://doi.org/10.1038/s41598-021-92691-1
Rodríguez-García, A., González-Saldívar, F.N., Cantú-Ayala, C.M. y Uvalle-Sauceda, J.I. (2023). Food competition between Barbary sheep (Ammotragus lervia Pallas, 1777) and Bighorn sheep (Ovis canadensis Shaw, 1804) in Coahuila State. Revista Mexicana de Ciencias Forestales, 14, 294-316. https://doi.org/10.29298/rmcf.v14i79.1358
Roy, H.E., Hesketh, H., Purse, B.V., Eilenberg, J., Santini, A., Scalera, R., Stentiford, G.D., Adriaens, T., Bacela-Spychelska, K., Bass, D., Beckmann, K.M., Bessell, P., Bojko, J., Booy, O., Cardoso, A.C., Essl, F., Groom, Q., Harrower, C., Kleespies, R., …y Dunn, A.M. (2017). Alien pathogens on the horizon: opportunities for predicting their threat to wildlife. Conservation Letters, 10, 477-484. https://doi.org/10.1111/conI.12297
Sax, D.F., Stachowicz, J.J., Brown, J.H., Bruno, J.F., Dawson, M.N., Gaines, S.D., Grosberg, R.K., Hastings, A. y Holt, R.D. (2007). Ecological and evolutionary insights from species invasions. Trends in Ecology and Evolution, 22(9), 465–471. https://doi.org/10.1016/j.tree.2007.06.009
Selwood, K.E. y Zimmer, H.C. (2020). Refuges for biodiversity conservation: a review of the evidence. Biological Conservation, 245,108502. https://doi.org/10.1016/j.biocon.2020.108502
Sexton, J.P., McIntyre, P.J., Angert, A.L. y Rice, K.J. (2009). Evolu¬tion and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317
Shackleton, R.T., Biggs, R., Richardson, D.M. y Larson, B.M.H. (2018). Social-ecological drivers and impacts of invasion-related regime shifts: consequences for ecosystem services and human wellbeing. Environmental Science and Policy, 89, 300-314. https://doi.org/10.1016/j.envsci.2018.08.005
Shao, Y., Ethier, D.M. y Bonner, S.J. (2024). Invasion dynamics of the European Collared-dove in North America are explained by combined effects of habitat and climate. Ornithological Applications, 126(1), duad052. https://doi.org/10.1093/ornithapp/duad052
Shea, K. y Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution, 17(4), 170-176. https://doi.org/10.1016/S0169-5347(02)02495-3.
Shivanna, K.R. (2022). Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy, 88,160–171. https://doi.org/10.1007/s43538-022-00073-6
Schwoerer, T., Schmidt, J.I., Davis, T.J. y Martin, A.E. (2024). Human-connected wild lands: How network analysis can inform invasive species management. Biological Conservation, 299, 110797. https://doi.org/10.1016/j.biocon.2024.110797
Soberón, J. y Peterson, A.T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1-10. https://doi.org/10.17161/bi.v2i0.4
Sutton, G.F. y Martin, G.D. (2022). Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect. Ecological Modelling, 473, 110139. https://doi.org/10.1016/j.ecolmodel.2022.110139
Taylor, M. y Figgis P. (2007). Protected Areas: Buffering nature against climate change. En Proceedings of a WWF and IUCN World Commission on Protected Areas Symposium, 18-19 de junio de 2007. WWF.
Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O´Neill, B., Sanderson, B., van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Tokarska, K.B., Hurtt., G., Kriegler, E., Lamarque, J.-F., Meehl, G., …Ziehn, T. (2021). Climate model projections from the scenario model intercomparison project (scenario MIP) of CMIP6. Earth System Dynamics, 12, 253–293. https://doi.org/10.5194/esd-12-253-2021
Thomas, C.D. y Gillingham, P.K. (2015). The performance of protected areas for biodiversity under climate change. Biological Journal of the Linnean Society, 115, 718–730. https://doi.org/10.1111/bij.12510
Venette, R.C., Gordon, D.R., Juzwik, J., Koch, F.H., Liebhold, A.M., Peterson, R.K.D., Sing, S.E. y Yemshanov, D. (2021). Early Intervention Strategies for Invasive Species Management: Connections Between Risk Assessment, Prevention Efforts, Eradication, and Other Rapid Responses. En T.M. Poland, T. Patel-Weynand, D.M. Finch, C.F. Miniat, D.C. Hayes y V.M. Lopez (eds.), Invasive Species in Forests and Rangelands of the United States. Springer, Cham. https://doi.org/10.1007/978-3-030-45367-1_6
Vicente, J.R., Fernandes, R.F., Randin, C.F., Juzwik, J., Koch, F.H., Liebhold, A.M., Peterson, R.K.D., Sing, S.E. y Yemshanov, D. (2013). Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. Journal of Environmental Management, 131, 185–195. https://doi.org/10.1016/j.jenvman.2013.09.032
Villaseñor, J.L., Encina-Domínguez, J.A., Estrada-Castillón, E., Hinton, G.S., Mora-Olivo, A., Ortiz, E. y Villarreal-Quintanilla, J.A. (2023). Diversidad florística de la región noreste de México, estados de Coahuila, Nuevo León y Tamaulipas. Botanical Sciences, 101, 1301-1319. https://doi.org/10.17129/botsci.3328
Warren, D.L. y Seifert, S.N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335–342. https://doi.org/10.1890/10-1171.1
Wenger, S.J. y Olden, J.D. (2012). Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecology and Evolution, 3, 260–267. https://doi.org/10.1111/j.2041-210X.2011.00170.x
Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H.V., Damschen, E.I., Davies, T.J., Grytnes, J.-A., Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M. y Stephens, P.R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–01324. https://doi.org/10.1111/j.1461-0248.2010.01515.x
Yates, K.L., Bouchet, P.J., Caley, M.J., Mengersen, K., Randin, C.F., Parnell, S., Fielding, A.H., Bamford, A.J., Ban, S., Barbosa, A.M., Dormann, C.F., Elith, J., Embling, C.B., Ervin, G.N., Fisher, R., Gould, S., Graf, R.F., Gregr, E.J., Halpin, P.N., Heikkinen, R.K. y Sequeira, A.M.M. (2018). Outstanding challenges in the transferability of ecological models. Trends in Ecology and Evolution, 33, 790–802. https://doi.org/10.1016/j.tree.2018.08.001
Yiwen, Z., Wei, L-B. y Yeo, D.C.J. (2016). Novel method to select environmental variables in MaxEnt: a case study using invasive crayfish. Ecological Modelling, 341, 5-13. https://doi.org/10.1016/j.ecolmodel.2016.09.019
Zanón-Martínez, J. I., Santillán, M.A., Sarasola, J.H. y Travaini, A. (2016). A native top predator relies on exotic prey inside a protected area: The puma and the introduced ungulates in Central Argentina. Journal of Arid Environments, 134, 17– 20. https://doi.org/10.1016/j.jaridenv.2016.06.015
License
Copyright (c) 2026 Jorge E. Ramírez-Albores, Heliot Zarza, Marlín Pérez-Suárez, José F. González-Maya, J. Javier Ochoa-Espinoza

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.