Naturaleza y Sociedad. Desafíos Medioambientales

Nat. Soc.: Desafíos Medioambient. | eISSN 2805-8631

Organic enrichment of sediments from freshwater aquaculture: Preliminary application of the MOM system in a Colombian lake

No. 13 (2025-09-16)
  • Erwann Legrand
    Institute of Marine Research (Norway)
    ORCID iD: https://orcid.org/0000-0001-5224-5227
  • Iván Andrés Sánchez-Ortiz
    Universidad de Nariño (Udenar), Departamento de Recursos Hidrobiológicos (Colombia)
    ORCID iD: https://orcid.org/0000-0001-7579-5969
  • Pia Kupka Hansen
    Institute of Marine Research (Norway)
    ORCID iD: https://orcid.org/0000-0001-6501-6060
  • Rosa Helena Escobar-Lux
    Institute of Marine Research (Norway)
    ORCID iD: https://orcid.org/0000-0003-2465-823X

Abstract

Aquaculture is steadily expanding and has become a vital source of food and income globally. However, this growth also exerts increasing pressure on aquatic ecosystems. Net-cage aquaculture releases effluents, primarily organic matter, which can cause environmental impacts that vary in severity depending on production intensity and site characteristics. Norway developed the MOM system (Monitoring, Ongrowing fish farms, Modelling) to monitor the environmental impact in marine environments. This study evaluates, for the first time, the MOM system’s applicability to assess the impact of aquaculture in freshwater environments. Sediment samples were collected from Lake La Cocha in Colombia, near three fish farms with different production levels, as well as from two reference sites. The analysis followed the Norwegian MOM protocol, which considers three groups of parameters: the presence/absence of fauna (Group I), pH and redox potential (Group II), and the “sensory” characteristics of the sediments, such as color, odor, and the presence of gas bubbles (Group III). The results indicate that, overall, sediments near the studied farms were in very good to good condition. However, a decrease in pH associated with organic enrichment was observed, along with signs of gas release, reduced sediment consistency, and increased sample volume. These changes suggest sedimentary impacts related to freshwater aquaculture. The results indicate the need for additional measurements and observations of various parameters—including redox potential, color, deposit thickness, and odor—to improve system characterization in continental environments. These findings represent a significant step toward developing an environmental monitoring protocol for freshwater aquaculture. Incorporating data from diverse water bodies and production levels will help refine this protocol and support more sustainable aquaculture development in Colombia.

Keywords: Environmental impacts, aquaculture, floating cages, Lake La Cocha, monitoring, organic matter, sediment, Colombia

References

Alpaslan, A., & Pulatsü, S. (2008). The effect of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) cage culture on sediment quality in Kesikköprü Reservoir, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 8, 65–70.

Arshad, S., Arshad, S., Afzal, S., & Tasleem, F. (2024). Environmental impact and sustainable practices in aquaculture: A comprehensive review. Haya: The Saudi Journal of Life Sciences, 9(11), 447–454. https://doi.org/10.36348/sjls.2024.v09i11.005

Beveridge, M.C.M. (2004). Cage aquaculture (3rd ed). Oxford: Blackwell.

Beveridge, M.C.M., & Brummett, R.E. (2015). Aquaculture and the environment. In J.F. Craig (Ed.), Freshwater fisheries ecology (pp. 794–803). Wiley. https://doi.org/10.1002/9781118394380.ch55

Botina-Jojoa, J. A., & Guerrero-Mora, E. Y. (2021). Aspectos educativos- ambientales respecto al humedal Ramsar – Laguna de La Cocha asociados a los servicios ecosistémicos, desde la ecopedagogía con la comunidad educativa de la básica primaria de la institución educativa El Encano del municipio de Pasto [Master’s thesis, Universidad de Nariño]. https://sired.udenar.edu.co/12606/1/210876.pdf

Braaten, R. 2007. Cage aquaculture and environmental impacts. In A. Bergheim (Ed.), Aquacultural engineering and environment (Vol. 661, pp. 49–91). Research Signpost: Kerala.

Bucheli-Rosero, L. A., Rojas-Bastidas, B.F., & Mafla-Chamorro, F. (2021). Monitoreo de la calidad del agua mediante clorofila-a aplicando imágenes satelitales en el Humedal Ramsar, lago Guamués. Ingeniare, 17(31), 21–31. https://doi.org/10.18041/1909-2458/ingeniare.31.8935

Burbano-Gallardo, E., Duque-Nivia, G., Imues-Figueroa, M., Gonzalez-Legarda, E., Delgado-Gómez, M., & Pantoja-Díaz, J. (2021). Efecto de cultivos piscícolas en los sedimentos y la proliferación de comunidades bacterianas nitrificantes en el lago Guamuez, Colombia. Ciencia y Tecnología Agropecuaria, 22(2), e1581. https://doi.org/10.21930/rcta.vol22_num2_art:1581

Cornel, G.E., & Whoriskey, F.G. (1993). The effects of rainbow trout (Oncorhynchus mykiss) cage culture on the water quality, zooplankton, benthos and sediments of Lac du Passage, Quebec. Aquaculture, 109, 101–117. https://doi.org/10.1016/0044-8486(93)90208-G

DeLaune, R.D., & Smith, C.J. (1985). Release of nutrients and metals following oxidation of freshwater and saline sediment. Journal of Environmental Quality, 14(2), 164–168. https://doi.org/10.2134/jeq1985.00472425001400020002x

Dirican S. (2021). Cage aquaculture in Çamligöze Dam Lake (Sivas-Turkey): Challenges and opportunities. International Journal of Agricultural and Natural Sciences, 14(3), 247–254. https://www.ijans.org/index.php/ijans/article/view/548

Duque-Trujillo, J.F., Hermelin, M., & Toro, G.E. (2016). The Guamuéz (La Cocha) Lake. In M. Hermelin (Ed.), Landscapes and landforms of Colombia. World geomorphological landscapes (pp. 203–210). Springer International Publishing. https://doi.org/10.1007/978-3-319-11800-0_17

Egessa, R., Pabire, G.W., & Ocaya, H. (2018). Benthic macroinvertebrate community structure in Napoleon Gulf, Lake Victoria: Effects of cage aquaculture in eutrophic lake. Environmental Monitoring and Assessment, 190(112). https://doi.org/10.1007/s10661-018-6498-5

Elvines, D.M., MacLeod, C.K., Ross, D.J., Hopkins, G.A., & White, C.A. (2024). Fate and effects of fish farm organic waste in marine systems: Advances in understanding using biochemical approaches with implications for environmental management. Reviews in Aquaculture, 16(1), 66–85. https://doi.org/10.1111/raq.12821

Ervik, A., Hansen, P.K., Aure, J., Stigebrandt, A., Johannessen, P., & Jahnsen, T. (1997). Regulating the local environmental impact of intensive marine fish farming I. The concept of the MOM system (Modelling-Ongrowing fish farms-Monitoring). Aquaculture, 158, 85–94. https://doi.org/10.1016/S0044-8486(97)00186-5

FAO. (2024). The state of world fisheries and aquaculture 2024 – Blue Transformation in action. Rome, Italy. https://doi.org/10.4060/cd0683en

FAO. (2025). Colombia. Text by Salazar Ariza, G. Fisheries and Aquaculture. https://www.fao.org/fishery/en/countrysector/naso_colombia

González-Legarda, E.A., Duque Nivia, G., & Ángel Sánchez, D.I. (2023). Cambios ambientales en agua y sedimentos por acuicultura en jaulas flotantes en el Lago Guamuez, Nariño, Colombia. Acta Agronómica, 71(1), 22–28. https://doi.org/10.15446/acag.v71n1.98924.

Grey, J.S. (1981). The ecology of marine sediments. Cambridge University Press.

Hargrave, B.T. (2010). Empirical relationships describing benthic impacts of salmon aquaculture. Aquaculture Environment Interactions, 1, 33–46. https://doi.org/10.3354/aei00005

Hansen, P.K., Ervik, A., Schaanning, M., Johannessen, P., Aure, J., Jahnsen, T., & Stigebrandt, A. (2001). Regulating the local environmental impact of intensive, marine fish farming II. The monitoring programme of the MOM system Modelling–Ongrowing fish farms–Monitoring. Aquaculture, 194(1-2), 75–92. https://doi.org/10.1016/S0044-8486(00)00520-2

Jaramillo-García, D.F., Rodríguez-Sosa, N., Salazar-Salazar, M., Hurtado-Montaño, C. A., & Rondón-Lagos, M. (2020). Contaminación del Lago de Tota y modelos biológicos para estudios de genotoxicidad. Ciencia en Desarrollo, 11(2), 65–83. https://doi.org/10.19053/01217488.v11.n2.2020.11467

Karakoca, S., & Topcu, A. (2017). Rainbow trout (Oncorhynchus mykiss) cage culture: Preliminary observations of surface sediment’s chemical parameters and phosphorus release in Gokcekaya reservoir, Turkey. Journal of Geoscience and Environment Protection, 5, 12–23. https://doi.org/10.4236/gep.2017.54002

Kutti, T., Hansen, P.K., Ervik, A., Høisæter, T., & Johannessen, P. (2007). Effects of organic effluents from a salmon farm on a fjord system. II. Temporal and spatial patterns in infauna community composition. Aquaculture, 262(2-4), 355–366. https://doi.org/10.1016/j.aquaculture.2006.10.008

Leal, L.A., Ángel-Ospina, A.C., Ramos, J.A.L., & Machuca-Martínez, F. (2025). Aquaculture sector in Colombia: Uncovering sustainability, transformative potential, and trends through bibliometric and patent analysis. Aquaculture, 598, 742068. https://doi.org/10.1016/j.aquaculture.2024.742068

Legaspi, K., Lau, A.Y.A., Jordan, P., Mackay, A., Mcgowan, S., Mcglynn, G., Baldia, S., Papa, R.D., & Taylor, D. (2015). Establishing the impacts of freshwater aquaculture in tropical Asia: the potential role of palaeolimnology. Geography and Environment, 2, 148–163. https://doi.org/10.1002/geo2.13

Liu, Y., Wang, X., Wu, W., & Zhang, J. (2024). Testing the applicability of the Modelling-Ongrowing fish farms-Monitoring B (MOM-B) investigation system for assessing benthic habitat quality in the manila clam Ruditapes philippinarum aquaculture areas. Marine Environmental Research, 198, 106558. https://doi.org/10.1016/j.marenvres.2024.106558

López-Martínez, M.L., & Madroñero-Palacios, S.M. (2015). Estado trófico de un lago tropical de alta montaña: caso laguna de La Cocha. Ciencia e Ingeniería Neogranadina, 25(2), pp. 21–42. http://dx.doi.org/10.18359/rcin.1430

López-Martínez, M.L., Jurado-Rosero, G.A., Páez-Montero, I.D., & Madroñero-Palacios, S.M. (2017). Estructura térmica del lago Guamués, un lago tropical de alta montaña. Luna Azul, 44, 94–119. https://doi.org/10.17151/luaz.2017.44.7

Lubembe, S.I., Walumona, J.R., Hyangya, B.L., Kondowe, B.N., Kulimushi, J.D.M., Shamamba, G.A., Kulimushi, A.M., Hounsounou, B.H.R., Mbalassa, M., Masese, F.O. & Masilya, M.P. (2024). Environmental impacts of tilapia fish cage aquaculture on water physico-chemical parameters of Lake Kivu, Democratic Republic of the Congo. Frontiers in Water, 6, 1325967. https://doi.org/10.3389/frwa.2024.1325967

Luna-Imbacuan, M.A. (2011). Efluentes piscícolas: Características contaminantes, impactos y perspectivas de tratamiento. Journal de Ciencia e Ingeniería, 3(1), 12–15. https://jci.uniautonoma.edu.co/2011/2011-2.pdf

Mendiburu, F. de. (2023). agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-7 The Comprehensive R Archive Network. https://CRAN.R-project.org/package=agricolae

Merino, M.C., Bonilla, S.P., & Bages, F. (2013). Diagnóstico del estado de la acuicultura en Colombia. Autoridad Nacional de Pesca y Acuicultura – AUNAP. Bogotá.

Miao, S., DeLaune, R.D., & Jugsujinda, A. (2006). Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Science of the Total Environment, 371, 334–343. https://doi.org/10.1016/j.scitotenv.2006.07.027

Ministerio de Medio Ambiente. (2001). Ficha informativa de los humedales de Ramsar. Laguna de la Cocha. Ramsar Sites Information Service. https://rsis.ramsar.org/RISapp/files/RISrep/CO1047RIS.pdf?language=en

Nieto, J. (2024, September 14). El dilema de la acuicultura en Colombia: ¿Una solución sostenible o una amenaza para el futuro? ANEIA. https://aneia.uniandes.edu.co/el-dilema-de-la-acuicultura-en-colombia-una-solucion-sostenible-o-una-amenaza-para-el-futuro/

OECD. (2016). OECD Review of Fisheries: Country Statistics 2015. OECD Publishing. http://dx.doi.org/10.1787/rev_fish_stat_en-2015-en

Oh, H.T., Jung, R.-H., Cho, Y.S., Hwang, D.W., & Yi, Y.M. (2015). Marine environmental impact assessment of abalone, Haliotis discus hannai, cage farm in Wan-do, Republic of Korea. Ocean Science Journal, 50, 657–667. https://doi.org/10.1007/s12601-015-0060-y

Osorio A, Wills A, & Muñoz A. (2013). Caracterización de coproductos de la industria del fileteado de tilapia nilótica (Oreochromis niloticus) y trucha arcoíris (Oncorhynchus mykiss) en Colombia. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 60(3), 182–195. https://www.redalyc.org/articulo.oa?id=407639237004

Outridge, P., & Wang, F. (2015). The stability of metal profiles in freshwater and marine sediments. In J. Blais, M. Rosen, & J. Smol, (Eds.), Environmental contaminants. Developments in paleoenvironmental research. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9541-8_3

Pamatmat, M.M. (1973). Oxidation of organic matter in sediments. Office of Research and Development, US Environmental Protection Agency.

Park, S.S., & Jaffé, P.R. (1996). Development of a sediment redox potential model for the assessment of postdepositional metal mobility. Ecological Modelling, 91, 169–181. https://doi.org/10.1016/0304-3800(95)00188-3

Patrick, W.H. Jr., & Turner, F.T. (1968). Effect of redox potential on manganese transformation in waterlogged soil. Nature, 220(2), 476–478.

Pearson, T.H., & Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution in the marine environment. Oceanography and Marine Biology: An Annual Review, 16, 229–311.

Pearson, T.H., & Stanley, S.O. (1979). Comparative measurement of the redox potential of marine sediments as a rapid means of assessing the effect of organic pollution. Marine Biology, 53, 371–379.

Pearson, T.H., & Black, K.D. (2001). The environmental impact of marine fish cage culture. In K.D. Black (Ed.), Environmental impacts of aquaculture (pp. 1–31). Sheffield: Academic Press.

Pérez-Rincón, M., Hurtado, I., Restrepo, S., Bonilla, S., Calderón, H., & Ramírez, A. (2017). Metodología para la medición de la huella hídrica en la producción de tilapia, cachama y trucha: estudios de caso para el Valle del Cauca (Colombia). Revista Ingeniería y Competitividad, 19(2), 109–120. https://doi.org/10.25100/iyc.v19i2.5298

R Core Team. (2021). R: A language and environment for statistical computing. The Comprehensive R Archive Network. https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf

Rooney, R., & Podemski, C.L. (2009). Effects of an experimental rainbow trout (Oncorhynchus mykiss) farm on invertebrate community composition. Canadian Journal of Fisheries and Aquatic Sciences, 66(11), 1949–1964. https://doi.org/10.1139/F09-130

Schaanning, M.T. (1991). Effects of fish farms on marine sediments. Jordforsk, Report No. 212.409-1. Oslo. (In Norwegian, abstract in English).

Schaanning, M.T., (1994). Distribution of sediment properties in coastal areas adjacent to fish farms and evaluation of five locations surveyed in October 1993. Niva report No. 3102. Oslo: Norwegian Institute of Water Research.

Schaanning, M.T., & Dragsund, E. (1993). Relationship between current and sediment chemistry at fish farm sites. Niva/Oceanor report No. OCN R-93051. Oslo: Norwegian Institute of Water Research.

Sigg, L. (2000). Redox Potential Measurements in Natural Waters: Significance, Concepts and Problems. In J. Schüring, H.D. Schulz, W.R. Fischer, J. Böttcher, & W.H.M. Duijnisveld (Eds.), Redox (pp. 1–12). Springer. https://doi.org/10.1007/978-3-662-04080-5_1

Souto Cavalli, L., Blanco Marques, F., Watterson, A., & Ferretto da Rocha, A. (2021). Aquaculture’s role in Latin America and Caribbean and updated data production. Aquaculture Research, 52(9), 4019–4025. https://doi.org/10.1111/are.15247

Taranger, G.L., Karlsen, Ø., Bannister, R.J., Glover, K.A., Husa, V., Karlsbakk, E., Kvamme, B.O., Boxaspen, K.K., Bjørn, P.A., Finstad, B., Madhun, A.S., Morton, H.C., & Svåsand, T. (2015). Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES Journal of Marine Sciences, 72, 997–1021. https://doi.org/10.1093/icesjms/fsu132

Torres-Barrera, N.H., & Grandas-Rincón, I.A. (2017). Estimación de los desperdicios generados por la producción de trucha arcoíris en el lago de Tota, Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 18(2), 247–255. https://doi.org/10.21930/rcta.vol18_num2_art:631

Valdemarsen, T., Hansen, P.K., Ervik, A., & Bannister, R.J. 2015. Impact of deep-water fish farms on benthic macrofauna communities under different hydrodynamic conditions. Marine Pollution Bulletin, 101(2), 776–783. https://doi.org/10.1016/j.marpolbul.2015.09.036

Van Boxel, J. H., González-Carranza, Z., Hooghiemstra, H., Bierkens, M., & Vélez, M. I. (2013). Reconstructing past precipitation from lake levels and inverse modelling for Andean Lake La Cocha. Journal of Paleolimnology, 51(1), 63–77. https://doi.org/10.1007/s10933-013-9755-1

Varol, M. (2019). Impacts of cage fish farms in a large reservoir on water and sediment chemistry. Environmental Pollution, 252, 1448–1454. https://doi.org/10.1016/j.envpol.2019.06.090

Walker, R. R., & Snodgrass, W. J. (1986). Model for sediment oxygen demand in lakes. Journal of Environmental Engineering, 112, 25–43. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:1(25)

World Aquaculture Society [WAS]. (2024, September 12). Aquaculture in Colombia: Current Affairs in 2024. World Aquaculture Society. https://www.was.org/article/Aquaculture_in_Colombia_Current_Affairs_in_2024.aspx#

Zhang, J., Hansen, P.K., Fang, J., Wang, W., & Jiang, Z. (2009). Assessment of the local environmental impact of intensive marine shellfish and seaweed farming—Application of the MOM system in the Sungo Bay, China. Aquaculture, 287, 304–310. https://doi.org/10.1016/j.aquaculture.2008.10.008

Zhao, Y., Zhang, J., Qu, D., Yang, Y., Wu, W., Sun, K., & Liu, Y. (2021). Benthic environmental impact of deep sea cage and traditional cage fish mariculture in Yellow Sea, China. Aquaculture Research, 52, 5022–5033. https://doi.org/10.1111/are.15374

License

Copyright (c) 2025 Erwann Legrand, Iván Andrés Sánchez Ortiz, Pia Kupka Hansen, Rosa Helena Escobar-Lux

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.