Strategies for formulating microbial inoculants as a complement for more sustainable agriculture over time
No. 14 (2026-02-13)Author(s)
-
Wilson Gabriel Rodriguez EscuchaUniversidad INCCA de Colombia y Universidad de los Andes (Colombia)ORCID iD: https://orcid.org/0009-0001-0723-3179
-
Claudia Paola Manquillo HoyosUniversidad INNCA de ColombiaORCID iD: https://orcid.org/0009-0002-1546-7933
-
Lizeth Adriana Ballesteros GalindoUniversidad INNCA de Colombia (Colombia)ORCID iD: https://orcid.org/0009-0004-1772-1645
Abstract
Microbial inoculants provide sustainable alternatives to synthetic fertilizers and pesticides, helping to reduce soil degradation and increase agricultural productivity. This review aimed to analyze formulation strategies that maintain the viability and effectiveness of beneficial microorganisms, such as plant growth-promoting rhizobacteria (PGPR) and fungi, under challenging environmental conditions and within the context of sustainable agricultural practices. The methodology involved a systematic review of scientific literature published from 1992 to 2025, using the PRISMA method, and searches of specialized databases (Web of Science, PubMed, NCBI, and Google Scholar). Original articles, scientific reviews, and regulatory documents were selected, focusing on studies related to inoculant formulation, microbial stability carriers, and the regulation of agricultural bio-inputs, categorized by relevant themes. Key findings include encapsulation and co-encapsulation techniques with protective metabolites, use of solid, liquid, and biopolymer carriers, and the development of microbial consortia that enhance the stability and functionality of bioinoculants. Challenges were identified concerning the interaction of inoculants with native soil microbiota, edaphoclimatic conditions, and compatibility with inputs and conventional agronomic practices. In conclusion, this analysis demonstrated that the effectiveness of microbial inoculants depends on selecting efficient strains and ensuring proper formulation and application in the field—crucial factors for maintaining their stability and performance. This article provides an updated perspective on current trends and challenges in formulating microbial inoculants, highlighting their role in advancing toward sustainable and resilient agriculture.
The search for options that can complement or replace conventional practices, allowing for more sustainable long-term production, is a necessity; therefore, formulations with microbial inoculants have gained great relevance as an alternative. Inoculums based on the use of microorganisms such as plant growth-promoting bacteria, fungi, yeasts, and nematodes have the ability to facilitate the absorption and release of nutrients, maintain soil composition, and protect crops against various types of stress. However, their application in the field faces challenges related to their stability and efficacy due to conditions such as desiccation, pH, and competition with native communities that alter the physiology of living components. Therefore, the proper formulation of these active ingredients is essential to maintain their characteristics over time. There are various possibilities such as biochar, peat, or polymer encapsulation, maintaining their effectiveness and making their use compatible with conventional field methods. This paper will review the latest advances in the formulation of biological inoculants in the field, such as encapsulation, co-encapsulation of microorganisms and secondary metabolites, as well as the factors that affect their performance and compatibility in field applications.
References
Adesemoye, A. O. y Kloepper, J. W. (2009). Plant–microbe interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85(1), 1–12. https://doi.org/10.1007/s00253-009-2196-0
Alekseeva, L. I. y Osemwegie, O. O. (2020). Exopolysaccharides from bacteria and fungi: current status and perspectives in Africa. Heliyon, 6(6), e04205. https://doi.org/10.1016/j.heliyon.2020.e04205
Allouzi, M. M. A., Supramaniam, C. V., Chong, S. y Singh, A. (2023). Liquid biofertilizers as a sustainable solution for agriculture: Challenges and opportunities. Heliyon, 8(12), e12609. https://doi.org/10.1016/j.heliyon.2022.e12609
Arora, N. K., Fatima, T., Mishra, I., Verma, M., Mishra, J. y Mishra V. (2018). Environmental sustainability: challenges and viable solutions. Environmental Sustainability, 1(4), 309–340. https://doi.org/10.1007/s42398-018-00038-w
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E. y Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473
Balla, A., Silini, A., Cherif-Silini, H., Chenari Bouket, A., Alenezi, F. N. y Belbahri, L. (2022). Recent advances in encapsulation techniques of plant growth-promoting microorganisms and their prospects in the sustainable agriculture. Applied Sciences, 12(18), 9020. https://doi.org/10.3390/app12189020
Bashan, Y., de-Bashan, L. E., Prabhu, S. R. y Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil, 378, 1–33. https://doi.org/10.1007/s11104-013-1956-x
Bashan, Y., Hernández, J. P., Leyva, L. A. y Bacilio, M. (2002). Alginate microbeads as inoculant carriers for plant growth‑promoting bacteria. Biology and Fertility of Soils, 35, 359–368. https://doi.org/10.1007/s00374-002-0481-5
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., El-Enshasy, H. A. y Santoyo, G. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140
Bhardwaj, D., Ansari, M. W., Sahoo, R. K. y Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 66. https://doi.org/10.1186/1475-2859-13-66
Bini, D., Mattos, B.B., Figueiredo, J. E. F., dos Santos, F. C., Marriel, I. E., dos Santos, C. A. y de Oliveira-Paiva, C. A. (2024). Parameter evaluation for developing phosphate-solubilizing Bacillus inoculants. Brazilian Journal of Microbiology, 55(737–748). https://doi.org/10.1007/s42770-023-01182-0
Bolan, S., Hou, D., Wang, L., Hale, L. E., Egamberdieva, D., Tammeorg, P., Li, R., Wang, B., Xu, J., Wang, T., Sun, H., Padhye, L. P., Wang, H., Siddique, K., Rinklebe, J., Kirkham, M. y Bolan, N. (2023). The potential of biochar as a microbial carrier for agricultural and environmental applications. Science of The Total Environment, 886, 163968. https://doi.org/10.1016/j.scitotenv.2023.163968
Bustos, R., Castrillo, G., Linhares, F., Puga, M. I., Rubio, V., Pérez-Pérez, J. y Leyva, A. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genetics, 6(9), e1001102. https://doi.org/10.1371/journal.pgen.1001102
Čaušević, S., Dubey, M., Morales, M., Salazar, G., Sentchilo, V., Carraro, N., Ruscheweyh, H.-J., Sunagawa, S. y van der Meer, J. R. (2024). Niche availability and competitive loss by facilitation control proliferation of bacterial strains intended for soil microbiome interventions. Nature Communications, 15(1), 2557. https://doi.org/10.1038/s41467-024-46933-1
Cesari, A. B., Castilla Marín, V. E., Nieva Muratore, L., Paulucci, N. S. y Dardanelli, M. S. (2024). New inoculation strategy for legume based on Rhizobium-metabolite co-encapsulation. En Medina, C., López-Baena, F.J. (Eds.). Methods in Molecular Biology, Springer Protocols y Humana Press (pp. 261–272). https://doi.org/10.1007/978-1-0716-3617-6_18
Chelliah, R., Rubab, M., Vijayalakshmi, S., Karuvelan, M., Barathikannan, K. y Oh, D. H. (2025). Liposomes for drug delivery: classification, therapeutic applications, and limitations. Next Nanotechnology, 8, 100209. https://doi.org/10.1016/j.nxnano.2025.100209
Chen, Y., Feng, S., Liu, Q., Kang, D. y Zou, S. (2025). Drought Modulates Root–Microbe Interactions and Functional Gene Expression in Plateau Wetland Herbaceous Plants. Plants, 14(15), 2413. https://doi.org/10.3390/plants14152413
Chiou, T. J. y Lin, S. I. (2011). Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 62, 185–206. https://doi.org/10.1146/annurev-arplant-042110-103849
Clagnan, E., Costanzo, M., Visca, A., Di Gregorio, L., Tabacchioni, S., Colantoni, E., Sevi, F., Sbarra, F., Bindo, A., Nolfi, L., Magarelli, R. A., Trupo, M., Ambrico, A., Bevivino, A. y Bevilacqua, C. (2024). Culturomics- and metagenomics-based insights into soil microbial consortia: From natural communities to synthetic application. Frontiers in Microbiology, 15, 1473666. https://doi.org/10.3389/fmicb.2024.1473666
Clymo, R. S. y Reed, A. M. (1996). Growth in ombrotrophic peat bogs in the English Lake District. Journal of Ecology, 84(4), 741–754. https://doi.org/10.2307/2261473
Clymo, R. S., Turunen, J. y Tolonen, K. (1998). Carbon accumulation in peatlands: Rates, mechanisms, and climatic controls. Oikos, 81(2), 368–388. https://doi.org/10.2307/3547057
Compant, S., Samad, A., Faist, H. y Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004
Correa-Galeote, D., Bedmar, E. J. y Arone, G. J. (2018). Maize endophytic bacterial diversity as affected by soil cultivation history. Frontiers in Microbiology, 9, 484. https://doi.org/10.3389/fmicb.2018.00484
dos Reis, G. A., Martínez‑Burgos, W. J., Pozzan, R., Pastrana Puche, Y., Ocán‑Torres, D., de Queiroz Fonseca Mota, P., Rodrigues, C., Lima Serra, J., Scapini, T., Karp, S. G. y Soccol, C. R. (2024). Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks. Sustainability, 16(19), 8720. https://doi.org/10.3390/su16198720
Duque, T. S., Pinheiro, R. A., Souza, I. M., Silva, G. G., Soares, M. A. y Dos Santos, J. B. (2024). Herbicides and bio-inputs: Compatibility and challenges for sustainable agriculture. Chemosphere, 369, 143878. https://doi.org/10.1016/j.chemosphere.2024.143878
Fahey, C., Koyama, A., Antunes, P. M., Dunfield, K. y Flory, S. L. (2020). Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. The ISME Journal, 14(6), 1396–1409. https://doi.org/10.1038/s41396-020-0614-6
Farias, T. P., Castro, E. M., Tangerina, M. M. P., Rocha, C. Q., Bezerra, C. W. B. y Moreira, F. M. (2022). Rhizobia exopolysaccharides: promising biopolymers for use in the formulation of plant inoculants. Brazilian Journal of Microbiology, 53(1843–1856). https://doi.org/10.1007/s42770-022-00824-z
Food and Agriculture Organization of the United Nations [FAO]. (2022). Bioinsumos: Oportunidades de inversión en América Latina. FAO. https://openknowledge.fao.org/server/api/core/bitstreams/6f0feb21-441d-4662-aed5-03085a951d90/content
Food and Agriculture Organization of the United Nations [FAO] y Intergovernmental Technical Panel on Soils [ITPS]. (2015). Status of the world’s soil resources (SWSR): Main report. Rome: Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/3/i5199e/i5199e.pdf
Galbieri, R., de Oliveira, J. A., Negri, B. F., Boldt, A. S., Rizzi, U. S. y Belot, J. L. (2023). Bacillus subtilis as growth-promoting rhizobacteria co-inoculated on Bradyrhizobium-treated soybean seeds in the planting furrow. Revista Ceres, 70(6), e70601. https://doi.org/10.1590/0034-737X202370060001
García, M. M., Pereira, L. C., Braccini, A. L., Angelotti, P., Suzukawa, A. K., Marteli, D. C. y Dametto, I. B. (2017). Effects of Azospirillum brasilense on growth and yield compounds of maize grown at nitrogen-limiting conditions. Revista de Ciências Agrárias, 40(2), 353-362. https://doi.org/10.19084/RCA16101
Gauri, S.S., Mandal, S.M. y Pati, B.R. (2012). Impact of Azotobacter exopolysaccharides on sustainable agriculture. Applied Microbiology and Biotechnology, 95, 331–338. https://doi.org/10.1007/s00253-012-4159-0
Glick, B. R. (2012). Plant growth‐promoting bacteria: mechanisms and applications. Scientifica, 2012(1), 963401. https://doi.org/10.6064/2012/963401
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H.-S. y Patra, J. K. (2018). Revitalization of plant growth-promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140. https://doi.org/10.1016/j.micres.2017.08.016
Greffe, V. R. G. y Michiels, J. (2020). Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Applied Microbiology and Biotechnology, 104, 1–12. https://doi.org/10.1007/s00253-020-10501-6
Herrmann, L. y Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 97(20), 8859–8873. https://doi.org/10.1007/s00253-013-5228-8
Hungria, M., Loureiro, M. F., Mendes, I. C., Campo, R. J. y Graham, P. H. (2005). Inoculant preparation, production and application. En Nitrogen fixation in agriculture, forestry, ecology, and the environment (pp. 223-253). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-3544-6_11
Instituto de Hidrología, Meteorología y Estudios Ambientales [Ideam], Corporación Autónoma Regional de Cundinamarca [CAR] y Universidad de Ciencias Aplicadas y Ambientales [U.D.C.A.]. (2017). Protocolo para la identificación y evaluación de la degradación de suelos por salinización. https://observatorio.epacartagena.gov.co/protocolo-para-la-identificacion-y-evaluacion-de-la-degradacion-de-suelos-por-salinizacion/
Jambhulkar, P. P. y Sharma, P. (2012). Comparative survivability of Pseudomonas fluorescens RRb‑11 in different carriers and rhizosphere. The Bioscan, 7(3), 507–512. https://thebioscan.com/index.php/pub/article/view/1082
Jiménez-Arias, D., Morales-Sierra, S., García-García, A.L., Herrera, A.J., Pérez Schmeller, R., Suárez, E., Santana-Mayor, Á., Silva, P., Borges, J.P. y Pinheiro de Carvalho, M.Â.A. (2025). Alginate Microencapsulation as a Tool to Improve Biostimulant Activity Against Water Deficits. Polymers, 17(12), 1617. https://doi.org/10.3390/polym17121617
John, R. P., Tyagi, R. D., Brar, S. K., Surampalli, R. Y. y Prévost, D. (2010). Bio-encapsulation of microbial cells for targeted agricultural delivery. Critical Reviews in Biotechnology, 31(3), 211–226. https://doi.org/10.3109/07388551.2010.513327
Joosten, H. y Clarke, D. (2002). Wise Use of Mires and Peatlands: Background and Principles Including a Framework for Decision Making. International Mire Conservation Group (IMCG) and International Peat Society (IPS).
Kalinowski de Souza, G., de Farias, C. H., de Oliveira Mendes, G., Moreira, F. M. S. y Sampaio, J. A. L. (2019). Soybean inoculants in Brazil: An overview of quality control. Brazilian Journal of Microbiology, 50(1), 205–211. https://doi.org/10.1007/s42770-018-0028-z
Lambers, H., Mougel, C., Jaillard, B. y Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 321(1), 83-115. https://doi.org/10.1007/s11104-009-0042-x
Lehmann, J. y Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Routledge. https://doi.org/10.4324/9780203762264
Li, H., Nian, J., Fang, S., Guo, M., Huang, X., Zhang, F., ... y Ma, X. (2022). Regulation of nitrogen starvation responses by the alarmone (p) ppGpp in rice. Journal of Genetics and Genomics, 49(5), 469-480. https://doi.org/10.1016/j.jgg.2022.02.006
Lopes, M. J. D. S., Dias-Filho, M. B. y Gurgel, E. S. C. (2021). Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems, 5, https://doi.org/10.3389/fsufs.2021.606454
Lugtenberg, B. y Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
Ma, Y. (2019). Seed coating with beneficial microorganisms for precision agriculture. Biotechnology Advances, 37(7), 107423. https://doi.org/10.1016/j.biotechadv.2019.107423
Malusá, E., Pinzari, F. y Canfora, L. (2016). Efficacy of biofertilizers: challenges to improve crop production. En D. P. Singh, H. B. Singh y R. Prabha (Eds.), Microbial Inoculants in Sustainable Agricultural Productivity (pp. 17-40). Springer. https://doi.org/10.1007/978-81-322-2644-4_2
Malusá, E., Sas-Paszt, L. y Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal, 2012(1), 491206. https://doi.org/10.1100/2012/491206
Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L. y Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 105(7), 1141–1157. https://doi.org/10.1093/aob/mcq028
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. y The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. PNAS, 104(33), 13268–13272. https://doi.org/10.1073/pnas.0611508104
Morcillo, R. J. L. y Manzanera, M. (2021). The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites, 11(6), 337. https://doi.org/10.3390/metabo11060337
Mosier, S., Córdova, S. C. y Robertson, G. P. (2021). Restoring soil fertility on degraded lands to meet food, fuel, and climate security needs via perennialization. Frontiers in Sustainable Food Systems, 5, 706142. https://doi.org/10.3389/fsufs.2021.706142
Mouro, C., Gomes, A. P. y Gouveia, I. C. (2024). Microbial exopolysaccharides: structure, diversity, applications, and future frontiers in sustainable functional materials. Polysaccharides, 5(3), 241-287. doi.org/10.3390/polysaccharides5030018
Nadeem, S. M., Zahir, Z. A., Naveed, M. y Arshad, M. (2009). Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian journal of microbiology, 55(11), 1302-1309. https://doi.org/10.1139/W09-092
Ni, B., Xiao, L., Lin, D., Zhang, T. L., Zhang, Q., Liu, Y., ... y Zhu, Y. G. (2025). Increasing pesticide diversity impairs soil microbial functions. Proceedings of the National Academy of Sciences, 122(2), e2419917122. https://doi.org/10.1073/pnas.2419917122
Niu, B., Chen, H., Wu, W., Fang, X., Mu, H., Han, Y. y Gao, H. (2022). Co-encapsulation of chlorogenic acid and cinnamaldehyde essential oil in Pickering emulsion stabilized by chitosan nanoparticles. Food Chemistry: X, 14(30), 100312. https://doi.org/10.1016/j.fochx.2022.100312
O’Callaghan, M., Ballard, R. A. y Wright, D. (2022). Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use and Management, 38(3), 1340–1369. https://doi.org/10.1111/sum.12811
Panagos, P., Meusburger, K., Van Liedekerke, M., Alewell, C., Hiederer, R. y Montanarella, L. (2014). Assessing soil erosion in Europe based on data collected through a European network. Soil Science and Plant Nutrition, 60(1), 15-29. https://doi.org/10.1080/00380768.2013.835701
Pastor-Bueis, R., Sánchez-Cañizares, C., James, E. K. y González-Andrés, F. (2019). Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance. Frontiers in Microbiology, 10, 2724. https://doi.org/10.3389/fmicb.2019.02724
Pereira, J. F., Oliveira, A. L. M., Sartori, D., Yamashita, F. y Mali, S. (2023). Perspectives on the Use of Biopolymeric Matrices as Carriers for Plant-Growth Promoting Bacteria in Agricultural Systems. Microorganisms, 11(2), 467. https://doi.org/10.3390/microorganisms11020467
Petrillo, C., Vitale, E., Ambrosino, P., Arena, C. y Isticato, R. (2022). Plant Growth-Promoting Bacterial Consortia as a Strategy to Alleviate Drought Stress in Spinacia oleracea. Microorganisms, 10(9), 1798. https://doi.org/10.3390/microorganisms10091798
Pisarska, K. y Pietr, S. J. (2015). Biodiversity of dominant cultivable endophytic bacteria inhabiting tissues of six different cultivars of maize (Zea mays L. ssp. mays) cropped under field conditions. Polish Journal of Microbiology, 64(2), 163–170. https://pubmed.ncbi.nlm.nih.gov/26373177/
Rani, N., Maiti, A. y Daschakraborty, S. (2024). Comparative study of molecular mechanisms of sucrose & trehalose mediated protection and stabilization of Escherichia coli lipid membrane during desiccation. Chemistry Physics Impact, 8, 100645. https://doi.org/10.1016/j.chphi.2024.100645
Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M. y Nazir, M. Z. (2021). Plant growth-promoting rhizobacteria (PGPR) as biofertilizers and biopesticides. En K. R. Hakeem, A. M. Al-Ahmad y S. A. Hakeem (Eds.), Microbiota and Biofertilizers (pp. 181–196). Springer Nature. https://doi.org/10.1007/978-3-030-48771-3_11
Rodríguez, H. y Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4–5), 319–339. https://doi.org/10.1016/S0734-9750(99)00014-2
Rojas‑Sánchez, B., Guzmán‑Guzmán, P., Morales‑Cedeño, L. R., Orozco‑Mosqueda, M. d. C., Saucedo‑Martínez, B. C., Sánchez‑Yáñez, J. M., Fadiji, A. E., Babalola, O. O., Glick, B. R. y Santoyo, G. (2022). Bioencapsulation of Microbial Inoculants: Mechanisms, Formulation Types and Application Techniques. Applied Biosciences, 1(2), 198–220. https://doi.org/10.3390/applbiosci1020013
Saberi‑Riseh, R., Skorik, Y. A., Thakur, V. K., Moradi‑Pour, M., Tamanadar, E. y Noghabi, S. S. (2021). Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. International Journal of Molecular Sciences, 22(20), 11165. https://doi.org/10.3390/ijms222011165
Stephens, J. H. G. y Rask, H. M. (2000). Inoculant production and formulation. Field Crops Research, 65(2–3), 249-258. https://doi.org/10.1016/S0378-4290(99)00090-8
Szabados, L. y Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89–97. https://doi.org/10.1016/j.tplants.2009.11.009
Timmusk, S., Behers, L., Muthoni, J., Muraya, A. y Aronsson, A.C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49. https://doi.org/10.3389/fpls.2017.00049
Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K. y Chauhan, D. K. (2017). Silicon nanoparticles more effectively alleviate UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110, 70–81. https://doi.org/10.1016/j.plaphy.2016.06.026
Van der Heijden, M. G., de Bruin, S., Luckerhoff, L., van Logtestijn, R. S. y Schlaeppi, K. (2016). A widespread plant–fungal–bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME Journal, 10(2), 389–399. https://doi.org/10.1038/ismej.2015.120
Vassilev, N., Vassileva, M., Martos, V., García del Moral, L. F., Kowalska, J., Tylkowski, B. y Malusá, E. (2020). Formulation of microbial inoculants by encapsulation in natural polysaccharides: Focus on beneficial properties of carrier additives and derivatives. Frontiers in Plant Science, 11, 270. https://doi.org/10.3389/fpls.2020.00270
Vemmer, M. y Patel, A. V. (2013). Review of encapsulation methods suitable for microbial biological control agents. Biological Control, 67(3), 380–389. https://doi.org/10.1016/j.biocontrol.2013.09.003
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586. https://doi.org/10.1023/A:1026037216893
Vio, S. A., Martínez Sbrancia, C., Gortari, C., Galar, M. L. y Luna, M. F. (2025). Inoculation of microorganisms into the soil and rhizosphere. En D. Dharumadurai y A. Sankara Narayanan (Eds.), Plant Microbiome Engineering, Methods and Protocols in Food Science. Springer, Humana Press. https://doi.org/10.1007/978-1-0716-4180-4_50
Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. y Hart, M. (2016). Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agronomy for Sustainable Development, 36(5), 48. https://doi.org/10.1007/s13593-016-0385-7
Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S. y Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609
Yaadesh, S., Tomar, G. S., Kaushik, R., Prasanna, R. y Grover, M. (2023). Azospirillum–Bacillus associations: synergistic effects on in vitro PGP traits and growth of pearl millet at early seedling stage under limited moisture conditions. Biotech, 13(3), 90. https://doi.org/10.1007/s13205-023-03503-4
Yahya, M., Rasul, M., Sarwar, Y., Suleman, M., Tariq, M., Hussain, S. Z., ... y Yasmin, S. (2022). Designing synergistic biostimulants formulation containing autochthonous phosphate-solubilizing bacteria for sustainable wheat production. Frontiers in microbiology, 13, 889073. https://doi.org/10.3389/fmicb.2022.889073
Ye, Y., Wang, Z., Zhang, H. y Li, X. (2024). Biofuel production for circular bioeconomy: Present status and future perspectives. Science of the Total Environment, 964, 174482. https://doi.org/10.1016/j.scitotenv.2024.172863
Yu, Z. (2011). Holocene carbon flux histories of the world’s peatlands: Global carbon-cycle implications: Global carbon-cycle implications. The Holocene, 21(5), 761-774. https://doi.org/10.1177/0959683610386982
Zambrano-Moreno, D. C., Ramón-Rodríguez, L. F., Van Strahlen-Pérez, M. y Bonilla-Buitrago, R. R. (2015). Industria de bioinsumos de uso agrícola en Colombia / Bioinoculants industry for agricultural use in Colombia. Revista UDCA: Actualidad & Divulgación Científica, 18(1), 59-67. https://doi.org/10.31910/rudca.v18.n1.2015.445
Zuffo, A. M., Rezende, P. M., Bruzi, A. T., Oliveira, N. T., Soares, I. O., Neto, G. F. G., Cardillo, B. E. S. y Silva, L. O. (2015). Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense in the soybean crop. Revista de Ciências Agrárias, 87-93. https://doi.org/10.19084/rca.16873
License
Copyright (c) 2026 Wilson Gabriel Rodriguez Escucha, Claudia Paola Manquillo Hoyos, Lizeth Adriana Ballesteros Galindo

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.