Intercambio gaseoso de especies agrícolas nativas de La Mojana ante el aumento de temperatura y de CO2
HTML
PDF

Palabras clave

cambio climático
curvas de respuesta a la luz
fotosíntesis máxima
La Mojana colombiana
pequeños productores

Cómo citar

Ariza-González, A., Jarma-Orozco, A., Combatt-Caballero, E., Guzmán-Castro, J. C., Rodríguez-Páez, L., Jaraba-Navas, J., Ramírez-Campo, W., Díaz-Rodríguez, D., Leal Gómez, N., & Jiménez-Campos, Y. (2023). Intercambio gaseoso de especies agrícolas nativas de La Mojana ante el aumento de temperatura y de CO2. Naturaleza Y Sociedad. Desafíos Medioambientales, (7), 116–144. https://doi.org/10.53010/nys7.04

Resumen

La mayoría de los expertos que estudian las tendencias de las variaciones del clima coinciden en que los niveles de la temperatura y del CO2 registran un aumento atípico y sostenido en los últimos años. El efecto se sentirá en todos los sectores de la economía mundial, pero en los sistemas productivos de los pequeños agricultores, dada su alta vulnerabilidad, podría tener especial impacto. Considerando que la mayoría de los estudios en esta área se realizan midiendo el efecto individual de algunas variables, en el presente trabajo se evaluó el efecto simulado que causarían niveles elevados de temperatura (28, 30 y 32 °C) y de concentraciones de CO2 (380 y 420 μmol mol-1) sobre aspectos fotosintéticos importantes de algunas especies nativas de los pequeños productores de La Mojana, Colombia (punto de saturación de luz [PSL], punto de compensación de luz [PCL], tasa de fotosíntesis neta máxima [ANmax] y tasa de respiración en oscuridad [Ro]). Las especies se agruparon como hortalizas (ahuyama criolla, berenjena criolla y fríjol caupí), transitorias (arroz chombo, arroz bogotano y arroz LV) y perennes (café, roble y cacao). Los resultados más relevantes indicaron que tanto en concentraciones normales como altas de CO2, la temperatura afectaría las principales respuestas fotosintéticas de las especies. Las respuestas fotosintéticas de las especies hortícolas, a excepción de la ahuyama, se verían afectadas si la temperatura subiera a 30 y 32 °C en cualquiera de los dos escenarios simulados de CO2 ambiental. El comportamiento de las tres variedades de arroz fue diferencial, y el arroz bogotano y el arroz LV fueron relativamente tolerantes a temperaturas altas en condiciones normales o aumentadas de CO2, pero el arroz chombo sería más sensible a las altas temperaturas. En el grupo de las especies perennes, el café y el cacao fueron más sensibles y se afectarían principalmente ante temperaturas elevadas, en tanto que el roble no se vería afectado por las temperaturas con las concentraciones actuales de CO2 ambiental.

https://doi.org/10.53010/nys7.04
HTML
PDF

Citas

Ainsworth, E. A. y Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

Baath, G. S., Northup, B. K., Rao, S. C. y Kakani, V. G. (2021). Productivity and water use in intensified forage soybean-wheat cropping systems of the US southern Great Plains. Field Crops Research, 265, 108086. https://doi.org/10.1016/j.fcr.2021.108086

Chiu, C.-L., Hsiao, I.-F. y Chang, L. (2023). Overviewing global surface temperature changes regarding CO2 emission, population density, and energy consumption in the industry: Policy suggestions. Sustainability, 15(8), 7013. https://doi.org/10.3390/su15087013

Dipierri, A. A. y Zikos, D. (2020). The role of common-pool resources’ institutional robustness in a collective action dilemma under environmental variations. Sustainability, 12(24), 10526. https://doi.org/10.3390/su122410526

Doi, T., Sakurai, G. y Iizumi, T. (2020). Seasonal predictability of four major crop yields worldwide by a hybrid system of dynamical climate prediction and eco-physiological crop-growth simulation. Frontiers in Sustainable Food Systems, 4, 84. https://doi.org/10.3389/fsufs.2020.00084

Drake, J. E., Tjoelker, M. G., Vårhammar, A., Medlyn, B. E., Reich, P. B., Leigh, A., Pfautsch, S., Blackman, C. J., López, R., Aspinwall, M. J., Crous, K. Y., Duursma, R. A., Kumarathunge, D., De Kauwe, M. G., Jiang, M., Nicotra, A. B., Tissue, D. T., Choat, B., Atkin, O. K. y Barton, C. V. M. (2018). Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global change biology, 24(6), 2390-2402. https://doi.org/10.1111/gcb.14037

Duc, N. H., Csintalan, Z. y Posta, K. (2018). Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiology and Biochemistry, 132, 297-307. https://doi.org/10.1016/j.plaphy.2018.09.011

Farley, K. A., Tague, C. y Grant, G. E. (2011). Vulnerability of water supply from the Oregon Cascades to changing climate: Linking science to users and policy. Global Environmental Change, 21(1), 110-122. https://doi.org/10.1016/j.gloenvcha.2010.09.011

Fujimori, S., Iizumi, T., Hasegawa, T., Takakura, J. Y., Takahashi, K. y Hijioka, Y. (2018). Macroeconomic impacts of climate change driven by changes in crop yields. Sustainability, 10(10), 3673. https://doi.org/10.3390/su10103673

Galmes, J., Kapralov, M. V., Copolovici, L. O., Hermida-Carrera, C. y Niinemets, Ü. (2015). Temperature responses of the Rubisco maximum carboxylase activity across domains of life: Phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 123, 183-201. https://doi.org/10.1007/s11120-014-0067-8

He, Y. y Matthews, M. L. (2023). Seasonal climate conditions impact the effectiveness of improving photosynthesis to increase soybean yield. Field Crops Research, 296, 108907. https://doi.org/10.1016/j.fcr.2023.108907

Karklelienė, R., Juškevičienė, D. y Radzevičius, A. (2023). Application of genetic resources in the development of new lithuanian vegetable cultivars. Plants, 12(4), 807. https://doi.org/10.3390/plants12040807

Kumari, A., Lakshmi, G.A., Krishna, G.K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S.K. y Verma, K.K. (2022). Climate change and its impact on crops: A comprehensive investigation for sustainable agriculture. Agronomy, 12(12), 3008. https://doi.org/10.3390/agronomy12123008

Kunimitsu, Y. y Nishimori, M. (2020). Policy measures to promote mid-summer drainage in paddy fields for a reduction in methane gas emissions: The application of a dynamic, spatial computable general equilibrium model. Paddy and Water Environment, 18, 211-222. https://doi.org/10.1007/s10333-019-00775-6

Li, Q., Gao, Y., Hamani, A. K. M., Fu, Y., Liu, J., Wang, H. y Wang, X. (2023). Effects of warming and drought stress on the coupling of photosynthesis and transpiration in winter wheat (Triticum aestivum L.). Applied Sciences, 13(5), 2759. https://doi.org/10.3390/app13052759

Marić, A. Č., Čop, T., Oplanić, M., Ban, S. G. y Njavro, M. (2023). Adaptation to climate change in Adriatic Croatia—The view of policymakers. Sustainability, 15(9), 7085. https://doi.org/10.3390/su15097085

Mathur, S., Agrawal, D. y Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126. https://doi.org/10.1016/j.jphotobiol.2014.01.010

Pathirana, R. y Carimi, F. (2022). Management and utilization of plant genetic resources for a sustainable agriculture. Plants, 11(15), 2038. https://doi.org/10.3390/plants11152038

Peña-Lévano, L. M., Taheripour, F. y Tyner, W. E. (2019). Climate change interactions with agriculture, forestry sequestration, and food security. Environmental and Resource Economics, 74, 653-675. https://doi.org/10.1007/s10640-019-00339-6

Pompelli, M. F., Espitia-Romero, C. A., de Diós Jaraba-Navas, J., Rodriguez-Paez, L. A. y Jarma-Orozco, A. (2022). Stevia rebaudiana under a CO2 enrichment atmosphere: Can CO2 enrichment overcome stomatic, mesophilic and biochemical barriers that limit photosynthesis? Sustainability, 14(21), 14269. https://doi.org/10.3390/su142114269

Prieto-Benítez, S., Ruiz-Checa, R., González-Fernández, I., Elvira, S., Rucandio, I., Alonso, R. & Bermejo-Bermejo, V. (2023). Ozone and temperature may hinder adaptive capacity of Mediterranean perennial grasses to future global change scenarios. Plants, 12(3), 664. https://doi.org/10.3390/plants12030664

Rajpal, V. R., Singh, A., Kathpalia, R., Thakur, R. K., Khan, M. K., Pandey, A., Hamurcu, M. y Raina, S. N. (2023). The prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. Frontiers in Plant Science, 14, 1127239. https://doi.org/10.3389/fpls.2023.1127239

Sánchez-Reinoso, A. D., Ligarreto-Moreno, G. A. y Restrepo-Díaz, H. (2019). Chlorophyll α fluorescence parameters as an indicator to identify drought susceptibility in common bush bean. Agronomy, 9(9), 526. https://doi.org/10.3390/agronomy9090526

Snider, J. L., Thangthong, N., Rossi, C. y Pilon, C. (2022). Root system growth and anatomy of cotton seedlings under suboptimal temperature. Journal of Agronomy and Crop Science, 208(3), 372-383. https://doi.org/10.1111/jac.12591

Sun, Y., Liu, S. y Li, L. (2022). Grey correlation analysis of transportation carbon emissions under the background of carbon peak and carbon neutrality. Energies, 15(9), 3064. https://doi.org/10.3390/en15093064

Tan, X., Li, H., Zhang, Z., Yang, Y., Jin, Z., Chen, W., Tang, D., Wei, C. y Tang, Q. (2023). Characterization of the difference between day and night temperatures on the growth, photosynthesis, and metabolite accumulation of tea seedlings. International Journal of Molecular Sciences, 24(7), 6718. https://doi.org/10.3390/ijms24076718

Tiwari, S., Prasad, V., Chauhan, P. S. y Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science, 8, 1510. https://doi.org/10.3389/fpls.2017.01510

Urban, J., Ingwers, M. W., McGuire, M. A. y Teskey, R. O. (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. Journal of Experimental Botany, 68(7), 1757-1767. https://doi.org/10.1093/jxb/erx052

Verma, P., Yadav, A. N., Khannam, K. S., Panjiar, N., Kumar, S., Saxena, A. K., y Suman, A. (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 65, 1885-1899. https://doi.org/10.1007/s13213-014-1027-4

Vishwakarma, C., Krishna, G. K., Kapoor, R. T., Mathur, K., Lal, S. K., Saini, R. P., Yadava, P. y Chinnusamy, V. (2023). Bioengineering of canopy photosynthesis in rice for securing global food security: A critical review. Agronomy, 13(2), 489. https://doi.org/10.3390/agronomy13020489

Vitale, L., Vitale, E., Francesca, S., Lorenz, C. y Arena, C. (2023). Plant-growth promoting microbes change the photosynthetic response to light quality in spinach. Plants, 12(5), 1149. https://doi.org/10.3390/plants12051149

Von-Caemmerer, S. y Evans, J. R. (2015). Temperature responses of mesophyll conductance differ greatly between species. Plant, Cell & Environment, 38(4), 629-637. https://doi.org/10.1111/pce.12449

Wang, M., Li, T., Yuan, C., Tian, H. y Tian, S. (2022). Research on vehicle renewable energy use in cities with different carbon emission characteristics. Energy Reports, 8, 343-352. https://doi.org/10.1016/j.egyr.2022.03.064

Wang, X. Q., Zeng, Z. L., Shi, Z. M., Wang, J. H. y Huang, W. (2023). Variation in photosynthetic efficiency under fluctuating light between rose cultivars and its potential for improving dynamic photosynthesis. Plants, 12(5), 1186. https://doi.org/10.3390/plants12051186

Yalcinkaya, T., Uzilday, B., Ozgur, R., Turkan, I. y Mano, J. I. (2019). Lipid peroxidation-derived reactive carbonyl species (RCS): Their interaction with ROS and cellular redox during environmental stresses. Environmental and Experimental Botany, 165, 139-149. https://doi.org/10.1016/j.envexpbot.2019.06.004

Yang J, Feng Y, Chi T, Wen Q, Liang P, Wang A. y Li P. (2023). Mitigation of elevated CO2 concentration on warming-induced changes in wheat is limited under extreme temperature during the grain filling period. Agronomy, 13(5),1379. https://doi.org/10.3390/agronomy13051379

Zhou, R., Kong, L., Yu, X., Ottosen, C. O., Zhao, T., Jiang, F. y Wu, Z. (2019). Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiologiae Plantarum, 41, 1-11. https://doi.org/10.1007/s11738-019-2805-1

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Anthony Ariza-González, Alfredo Jarma-Orozco, Enrique Combatt-Caballero, Juan Carlos Guzmán-Castro, Luis Rodríguez-Páez, Juan Jaraba-Navas, Wilber Ramírez-Campo, Diana Díaz-Rodríguez, Nathalie Leal Gómez, Yanira Jiménez-Campos