Naturaleza y Sociedad. Desafíos Medioambientales

Nat. Soc.: Desafíos Medioambient. | eISSN 2805-8631

Gaseous Exchange of Native Agricultural Species in La Mojana Region in the Face of Increased Temperature and CO2

No. 7 (2023-12-15)
  • Anthony Ariza-González
    Universidad de Córdoba (Colombia)
    ORCID iD: https://orcid.org/0000-0002-6772-9221
  • Alfredo Jarma-Orozco
    Universidad de Córdoba (Colombia)
    ORCID iD: https://orcid.org/0000-0002-5821-2183
  • Enrique Combatt-Caballero
    Universidad de Córdoba (Colombia)
  • Juan Carlos Guzmán-Castro
    Universidad de Córdoba (Colombia)
    ORCID iD: https://orcid.org/0009-0006-0611-1248
  • Luis Rodríguez-Páez
    Universidad de Córdoba (Colombia)
    ORCID iD: https://orcid.org/0000-0002-1760-1852
  • Juan Jaraba-Navas
    Universidad de Córdoba (Colombia)
    ORCID iD: https://orcid.org/0000-0002-5826-707X
  • Wilber Ramírez-Campo
    Programa de Naciones Unidas para el Desarrollo, PNUD (Colombia)
    ORCID iD: https://orcid.org/0000-0001-5419-0557
  • Diana Díaz-Rodríguez
    Programa de Naciones Unidas para el Desarrollo, PNUD (Colombia)
    ORCID iD: https://orcid.org/0009-0000-8974-7618
  • Nathalie Leal Gómez
    Programa de Naciones Unidas para el Desarrollo, PNUD (Colombia)
    ORCID iD: https://orcid.org/0009-0008-2492-0721
  • Yanira Jiménez-Campos
    Programa de Naciones Unidas para el Desarrollo, PNUD (Colombia)
    ORCID iD: https://orcid.org/0000-0002-1230-2917

Abstract

Most experts who study climate variation trends agree that temperature and CO2 levels have shown an atypical and sustained increase in recent years. The effect will be felt in all sectors of the world economy, but the productive systems of small farmers, given their high vulnerability, could receive a higher impact. Considering that most studies in this area are carried out by measuring the individual effect of some variables, in the present work we evaluated the simulated effect caused by high temperature levels (28, 30, and 32 °C) and CO2 concentrations (380 and 420 μmol mol-1) on important photosynthetic aspects of some native species of small producers in La Mojana region in Colombia (light saturation point [LSP], light compensation point [LCP], maximum net photosynthetic rate [PNmax], and dark respiration rate [Rd]). The species were grouped as vegetables ([i] Cucurbita máxima, Duchense; [ii] Solanum melongena, L.; and [iii] Vigna unguiculata, L y Wald.), transients ([i] Oryza sativa, L. Cv: Chombo; [ii] Oryza sativa, L. Cv: Bogotano; and [iii] Oryza sativa, L. Cv: LV), and perennials ([i] Coffea arábica, L.; [ii] Tabebuia rosea, Bertol.; and [iii] Theobroma cacao, L.). The most relevant results indicated that at normal and high CO2 concentrations, temperature would affect the main photosynthetic responses of the species. The photosynthetic responses of the vegetable species, except for Cucurbita máxima, would be affected if the temperature rose to 30 and 32 °C in either of the two simulated scenarios of ambient CO2. The behavior of the three Oryza sativa varieties was differential; Bogotano rice and LV rice were relatively tolerant to high temperatures under normal or increased CO2 conditions, but Chombo rice would be more sensitive to high temperatures. In the group of perennial species, Coffea arábica and Theobroma cacao were more sensitive and would be affected mainly by high temperatures, whereas Tabebuia rosea would not be affected by temperatures at current ambient CO2 concentrations.

Keywords: climate change, Colombia, La Mojana region, light response curves, maximum photosynthesis, small farmers

References

Ainsworth, E. A. y Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

Baath, G. S., Northup, B. K., Rao, S. C. y Kakani, V. G. (2021). Productivity and water use in intensified forage soybean-wheat cropping systems of the US southern Great Plains. Field Crops Research, 265, 108086. https://doi.org/10.1016/j.fcr.2021.108086

Chiu, C.-L., Hsiao, I.-F. y Chang, L. (2023). Overviewing global surface temperature changes regarding CO2 emission, population density, and energy consumption in the industry: Policy suggestions. Sustainability, 15(8), 7013. https://doi.org/10.3390/su15087013

Dipierri, A. A. y Zikos, D. (2020). The role of common-pool resources’ institutional robustness in a collective action dilemma under environmental variations. Sustainability, 12(24), 10526. https://doi.org/10.3390/su122410526

Doi, T., Sakurai, G. y Iizumi, T. (2020). Seasonal predictability of four major crop yields worldwide by a hybrid system of dynamical climate prediction and eco-physiological crop-growth simulation. Frontiers in Sustainable Food Systems, 4, 84. https://doi.org/10.3389/fsufs.2020.00084

Drake, J. E., Tjoelker, M. G., Vårhammar, A., Medlyn, B. E., Reich, P. B., Leigh, A., Pfautsch, S., Blackman, C. J., López, R., Aspinwall, M. J., Crous, K. Y., Duursma, R. A., Kumarathunge, D., De Kauwe, M. G., Jiang, M., Nicotra, A. B., Tissue, D. T., Choat, B., Atkin, O. K. y Barton, C. V. M. (2018). Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global change biology, 24(6), 2390-2402. https://doi.org/10.1111/gcb.14037

Duc, N. H., Csintalan, Z. y Posta, K. (2018). Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiology and Biochemistry, 132, 297-307. https://doi.org/10.1016/j.plaphy.2018.09.011

Farley, K. A., Tague, C. y Grant, G. E. (2011). Vulnerability of water supply from the Oregon Cascades to changing climate: Linking science to users and policy. Global Environmental Change, 21(1), 110-122. https://doi.org/10.1016/j.gloenvcha.2010.09.011

Fujimori, S., Iizumi, T., Hasegawa, T., Takakura, J. Y., Takahashi, K. y Hijioka, Y. (2018). Macroeconomic impacts of climate change driven by changes in crop yields. Sustainability, 10(10), 3673. https://doi.org/10.3390/su10103673

Galmes, J., Kapralov, M. V., Copolovici, L. O., Hermida-Carrera, C. y Niinemets, Ü. (2015). Temperature responses of the Rubisco maximum carboxylase activity across domains of life: Phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 123, 183-201. https://doi.org/10.1007/s11120-014-0067-8

He, Y. y Matthews, M. L. (2023). Seasonal climate conditions impact the effectiveness of improving photosynthesis to increase soybean yield. Field Crops Research, 296, 108907. https://doi.org/10.1016/j.fcr.2023.108907

Karklelienė, R., Juškevičienė, D. y Radzevičius, A. (2023). Application of genetic resources in the development of new lithuanian vegetable cultivars. Plants, 12(4), 807. https://doi.org/10.3390/plants12040807

Kumari, A., Lakshmi, G.A., Krishna, G.K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S.K. y Verma, K.K. (2022). Climate change and its impact on crops: A comprehensive investigation for sustainable agriculture. Agronomy, 12(12), 3008. https://doi.org/10.3390/agronomy12123008

Kunimitsu, Y. y Nishimori, M. (2020). Policy measures to promote mid-summer drainage in paddy fields for a reduction in methane gas emissions: The application of a dynamic, spatial computable general equilibrium model. Paddy and Water Environment, 18, 211-222. https://doi.org/10.1007/s10333-019-00775-6

Li, Q., Gao, Y., Hamani, A. K. M., Fu, Y., Liu, J., Wang, H. y Wang, X. (2023). Effects of warming and drought stress on the coupling of photosynthesis and transpiration in winter wheat (Triticum aestivum L.). Applied Sciences, 13(5), 2759. https://doi.org/10.3390/app13052759

Marić, A. Č., Čop, T., Oplanić, M., Ban, S. G. y Njavro, M. (2023). Adaptation to climate change in Adriatic Croatia—The view of policymakers. Sustainability, 15(9), 7085. https://doi.org/10.3390/su15097085

Mathur, S., Agrawal, D. y Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126. https://doi.org/10.1016/j.jphotobiol.2014.01.010

Pathirana, R. y Carimi, F. (2022). Management and utilization of plant genetic resources for a sustainable agriculture. Plants, 11(15), 2038. https://doi.org/10.3390/plants11152038

Peña-Lévano, L. M., Taheripour, F. y Tyner, W. E. (2019). Climate change interactions with agriculture, forestry sequestration, and food security. Environmental and Resource Economics, 74, 653-675. https://doi.org/10.1007/s10640-019-00339-6

Pompelli, M. F., Espitia-Romero, C. A., de Diós Jaraba-Navas, J., Rodriguez-Paez, L. A. y Jarma-Orozco, A. (2022). Stevia rebaudiana under a CO2 enrichment atmosphere: Can CO2 enrichment overcome stomatic, mesophilic and biochemical barriers that limit photosynthesis? Sustainability, 14(21), 14269. https://doi.org/10.3390/su142114269

Prieto-Benítez, S., Ruiz-Checa, R., González-Fernández, I., Elvira, S., Rucandio, I., Alonso, R. & Bermejo-Bermejo, V. (2023). Ozone and temperature may hinder adaptive capacity of Mediterranean perennial grasses to future global change scenarios. Plants, 12(3), 664. https://doi.org/10.3390/plants12030664

Rajpal, V. R., Singh, A., Kathpalia, R., Thakur, R. K., Khan, M. K., Pandey, A., Hamurcu, M. y Raina, S. N. (2023). The prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. Frontiers in Plant Science, 14, 1127239. https://doi.org/10.3389/fpls.2023.1127239

Sánchez-Reinoso, A. D., Ligarreto-Moreno, G. A. y Restrepo-Díaz, H. (2019). Chlorophyll α fluorescence parameters as an indicator to identify drought susceptibility in common bush bean. Agronomy, 9(9), 526. https://doi.org/10.3390/agronomy9090526

Snider, J. L., Thangthong, N., Rossi, C. y Pilon, C. (2022). Root system growth and anatomy of cotton seedlings under suboptimal temperature. Journal of Agronomy and Crop Science, 208(3), 372-383. https://doi.org/10.1111/jac.12591

Sun, Y., Liu, S. y Li, L. (2022). Grey correlation analysis of transportation carbon emissions under the background of carbon peak and carbon neutrality. Energies, 15(9), 3064. https://doi.org/10.3390/en15093064

Tan, X., Li, H., Zhang, Z., Yang, Y., Jin, Z., Chen, W., Tang, D., Wei, C. y Tang, Q. (2023). Characterization of the difference between day and night temperatures on the growth, photosynthesis, and metabolite accumulation of tea seedlings. International Journal of Molecular Sciences, 24(7), 6718. https://doi.org/10.3390/ijms24076718

Tiwari, S., Prasad, V., Chauhan, P. S. y Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science, 8, 1510. https://doi.org/10.3389/fpls.2017.01510

Urban, J., Ingwers, M. W., McGuire, M. A. y Teskey, R. O. (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. Journal of Experimental Botany, 68(7), 1757-1767. https://doi.org/10.1093/jxb/erx052

Verma, P., Yadav, A. N., Khannam, K. S., Panjiar, N., Kumar, S., Saxena, A. K., y Suman, A. (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 65, 1885-1899. https://doi.org/10.1007/s13213-014-1027-4

Vishwakarma, C., Krishna, G. K., Kapoor, R. T., Mathur, K., Lal, S. K., Saini, R. P., Yadava, P. y Chinnusamy, V. (2023). Bioengineering of canopy photosynthesis in rice for securing global food security: A critical review. Agronomy, 13(2), 489. https://doi.org/10.3390/agronomy13020489

Vitale, L., Vitale, E., Francesca, S., Lorenz, C. y Arena, C. (2023). Plant-growth promoting microbes change the photosynthetic response to light quality in spinach. Plants, 12(5), 1149. https://doi.org/10.3390/plants12051149

Von-Caemmerer, S. y Evans, J. R. (2015). Temperature responses of mesophyll conductance differ greatly between species. Plant, Cell & Environment, 38(4), 629-637. https://doi.org/10.1111/pce.12449

Wang, M., Li, T., Yuan, C., Tian, H. y Tian, S. (2022). Research on vehicle renewable energy use in cities with different carbon emission characteristics. Energy Reports, 8, 343-352. https://doi.org/10.1016/j.egyr.2022.03.064

Wang, X. Q., Zeng, Z. L., Shi, Z. M., Wang, J. H. y Huang, W. (2023). Variation in photosynthetic efficiency under fluctuating light between rose cultivars and its potential for improving dynamic photosynthesis. Plants, 12(5), 1186. https://doi.org/10.3390/plants12051186

Yalcinkaya, T., Uzilday, B., Ozgur, R., Turkan, I. y Mano, J. I. (2019). Lipid peroxidation-derived reactive carbonyl species (RCS): Their interaction with ROS and cellular redox during environmental stresses. Environmental and Experimental Botany, 165, 139-149. https://doi.org/10.1016/j.envexpbot.2019.06.004

Yang J, Feng Y, Chi T, Wen Q, Liang P, Wang A. y Li P. (2023). Mitigation of elevated CO2 concentration on warming-induced changes in wheat is limited under extreme temperature during the grain filling period. Agronomy, 13(5),1379. https://doi.org/10.3390/agronomy13051379

Zhou, R., Kong, L., Yu, X., Ottosen, C. O., Zhao, T., Jiang, F. y Wu, Z. (2019). Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiologiae Plantarum, 41, 1-11. https://doi.org/10.1007/s11738-019-2805-1

License

Copyright (c) 2023 Anthony Ariza-González, Alfredo Jarma-Orozco, Enrique Combatt-Caballero, Juan Carlos Guzmán-Castro, Luis Rodríguez-Páez, Juan Jaraba-Navas, Wilber Ramírez-Campo, Diana Díaz-Rodríguez, Nathalie Leal Gómez, Yanira Jiménez-Campos

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.